WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Нера́венство Бо́льцмана — неравенство, связывающее любую функцию распределения, удовлетворяющую уравнению Больцмана, и интеграл столкновений.

Формулировка

Для любой функции распределения , удовлетворяющей уравнению Больцмана, выполняется неравенство

где  — интеграл столкновений,  — импульс,  — масса частиц. Знак равенства при этом достигается в том и только том случае, когда что соответствует распределению Максвелла (здесь и  — скалярные, а  — векторная константы; внутренние круглые скобки обозначают скалярное произведение векторов)[1].

Доказательство

Доказательство есть в известной книге К. Черчиньяни[en][2].

Примечания

  1. Karniadakis G. M., Beskok A., Aluru N.  Microflows and Nanoflows: Fundamentals and Simulation. — New York: Springer Science & Business Media, 2005. — xxi + 818 p. — (Interdisciplinary Applied Mathematics, vol. 29). ISBN 978-0387-22197-7. — P. 589.
  2. Черчиньяни, 1978, с. 93.

Литература

  • Черчиньяни К.  Теория и приложения уравнения Больцмана. М.: Мир, 1978. — 495 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии