Марковское ограждение для узлов в графовой модели содержит все переменные, которые ограждают узел от остальной сети. Это означает, что марковское ограждение узла является единственным знанием, необходимым для предсказания поведения узла и его детей. Термин ввёл Джуда Перл в 1988[1].
В байесовской сети значения родителей и детей узла очевидно дают информацию об узле. Однако, родители его детей также нужно включать, поскольку их можно использовать для объяснения рассматриваемого узла. В марковской сети марковское ограждение для узла — это просто его смежные узлы.
Марковское ограждение для узла в байесовской сети — это набор узлов , состоящий из родителей , его детей и других родителей его детей. В марковской сети, марковское ограждение узла состоит из множества его соседей. Марковское ограждение узла A может также обозначаться как .
Любое множество узлов в сети условно независимы от , если оно зависит от множества , то есть, когда оно зависит от марковского ограждения узла . Вероятность имеет марковское свойство. Формально, для различных узлов и :
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .