WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Крите́рий усто́йчивости Ра́уса — один из методов анализа линейной стационарной динамической системы на устойчивость. Наряду с критерием Гурвица (который часто называют критерием Рауса — Гурвица) является представителем семейства алгебраических критериев устойчивости (в отличие от частотных критериев — таких, как критерий устойчивости Найквиста — Михайлова). Предложен Э. Дж. Раусом в 1875 г.[1]

Несмотря на то, что критерий Рауса исторически предложен ранее критерия Гурвица, его можно использовать как более удобную схему расчёта определителей Гурвица, особенно при больши́х степенях характеристического полинома[2].

К достоинствам метода относятся простая реализация на ЭВМ, а также простота анализа для систем небольшого (до 3) порядка. К недостаткам можно отнести отсутствие наглядности метода: при его применении сложно получить информацию о степени устойчивости, о её запасах.

Формулировка

Метод работает с коэффициентами характеристического уравнения системы. Пусть  — передаточная функция системы, а  — характеристическое уравнение системы. Представим характеристический полином в виде

Критерий Рауса представляет собой алгоритм, по которому составляется специальная таблица, в которую коэффициенты характеристического полинома записывают таким образом, что:

  1. в первой строке записываются коэффициенты уравнения с чётными индексами в порядке их возрастания;
  2. во второй строке — с нечётными;
  3. остальные элементы таблицы определяются по формуле: , где  — номер строки,  — номер столбца;
  4. число строк таблицы Рауса на единицу больше порядка характеристического уравнения.

Таблица Рауса:

1 2 3 4
- 1 ...
- 2 ...
3 ...
4 ...
... ... ... ... ... ...


Формулировка критерия Рауса:

Для устойчивости линейной стационарной системы необходимо и достаточно, чтобы коэффициенты первого столбца таблицы Рауса были одного знака. Если это не выполняется, то система неустойчива.

См. также

Примечания

Литература

  • Постников М. М.  Устойчивые многочлены. М.: Наука, 1981. — 176 с.
  • Чернецкий В. И.  Математическое моделирование динамических систем. — Петрозаводск: Петрозаводский гос. ун-т, 1996. — 432 с. ISBN 5-230-08981-4..

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии