WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Кратность критической точки -гладкой функции размерность так называемой локальной алгебры градиентного отображения этой функции в рассматриваемой точке.

Определение

Пусть -гладкая функция от переменных , имеющая своей критической точкой. Соответствующее градиентное отображение задается формулой Введем следующие обозначения:

  • алгебра формальных степенных рядов от переменных с центром в
  • идеал в алгебре гладких функций, порожденный образующими

Сопоставляя каждой гладкой функции её формальный ряд Тейлора, мы получаем вложение в алгебру . Локальной алгеброй градиентного отображения в точке называется факторалгебра а её размерность называется кратностью функции в точке

В случае, когда функции имеют в точке линейно независимые градиенты (это условие равносильно тому, что гессиан функции отличен от нуля), кратность , и критическая точка называется невырожденной. Удобно также положить в случае некритической точки.

Функции одной переменной

В этом случае , и кратность критической точки может быть определена условием:

при этом значение соответствует некритической точке. Действительно, так как в этом случае степенной ряд функции начинается с члена то любой элемент представим в виде , где и — многочлен степени задаваемый коэффициентами, т.е.

Теорема Тужрона в этом случае принимает тривиальный вид: в окрестности критической точки конечной кратности существуют координаты, в которых функция имеет вид

Функции нескольких переменных

В этом случае важной характеристикой критической точки является ранг матрицы Гессе в точке .

  • Если , то (по лемме Морса) в окрестности точки функция с помощью выбора гладких локальных координат приводится к виду
  • Если , то в окрестности точки функция с помощью выбора гладких локальных координат приводится к виду
и, если кратность функции равна , то приводится к виду
  • Если , то в окрестности точки функция с помощью выбора гладких локальных координат приводится к виду
где ряд Тейлора функции начинается с мономов степени
  • Если кубическая часть функции имеет три различных (вещественных или комплексных) корня, то приводится к виду
  • Если кубическая часть функции имеет два различных корня (один из них — кратный), то, при выполнении дополнительного условия общности положения, функция приводится к виду

Теорема деления

Пусть — гладкая функция от переменной , имеющая точку своей критической точкой конечной кратности по переменной , т.е.

Тогда в окрестности точки функция представима в виде

где и — гладкие функции своих аргументов, не обращается в нуль и для всех .

Впервые эта теорема была доказа Вейерштрассом для голоморфных функциий комплексных переменных[1] (теорема деления по Вейерштрассу). Приведённый выше вещественный аналог часто называют теоремой деления по Мальгранжу или по Мазеру.

Критические точки отображений

Кратность критической точки -гладкого отображения — это размерность локальной алгебры данного отображения.

Пусть -гладкое отображение, имеющее своей критической точкой. Отображение задается набором функций от переменных .

Введем следующие обозначения:

  • алгебра формальных степенных рядов от переменных с центром в
  • идеал в алгебре гладких функций, порожденный образующими

Сопоставляя каждой гладкой функции её формальный ряд Тейлора, мы получаем вложение в алгебру . Локальной алгеброй отображения в точке называется факторалгебра а её размерность называется кратностью отображения в точке

См. также

Литература

  • Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений, — Любое издание.
  • Брёкер Т., Ландер Л. Дифференцируемые ростки и катастрофы, — Любое издание.
  • Голубицкий М., Гийемин В. Устойчивые отображения и их особенности, — М.: Мир, 1977.
  • Хёрмандер Л. Введение в теорию функций нескольких комплексных переменных, — М.: Мир, 1968.
  • Сборник статей: Особенности дифференцируемых отображений, — М.: Мир, 1968.
  • Паламодов В.П. О кратности голоморфного отображения, — Функц. анализ и его прил., 1:3 (1967), стр. 54–65.
  • Арнольд В. И. Замечание о подготовительной теореме Вейерштрасса, — Функц. анализ и его прил., 1:3 (1967), стр. 1–8.

Примечания

  1. Weierstrass K. Einige auf die Theorie der analytischen Functionen mehrerer Veränderlichen sich beziehende Sätze. — Mathematische Werke, V. II, Mayer und Müller, Berlin, 1895, 135–188.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии