WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Интерполирование с кратными узлами — задача о построении многочлена минимальной степени, принимающего в некоторых точках (узлах интерполяции) заданные значения, а также заданные значения производных до некоторого порядка.

Показывается, что существует единственный многочлен степени , удовлетворяющий условиям:

, где .

Этот многочлен называют многочленом с кратными узлами, или многочленом Эрмита. В общем виде:

,  — количество узлов и  — кратность узла .

Шарль Эрмит показал, что

, где  — коэффициенты ряда Тейлора для функции .

Доказательство

Частные случаи

  • Если все равны единице, то интерполяционный многочлен Эрмита совпадает с интерполяционным многочленом Лагранжа.
  • Если количество узлов интерполяции равно единице, то интерполяционный многочлен Эрмита совпадает с многочленом Тейлора.
  • Если количество узлов интерполяции равно двум и в каждом задано значение функции и значение её производной — имеем задачу о построении кубического сплайна.

Оценка остатка интерполяции

См. также

Литература

  • Бахвалов Н. С., Численные методы, М., 1973.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии