Зуб состоит преимущественно из дентина с полостью, покрытого снаружи эмалью. Зуб имеет характерную форму и строение, занимает определенное положение в зубном ряду, построен из специальных тканей, имеет собственный нервный аппарат, кровеносные и лимфатические сосуды. Внутри зуба находится рыхлая соединительная ткань, пронизанная нервами и кровеносными сосудами (пульпа).
В норме у человека — от 28 до 32 зубов. Различают молочные и постоянные зубы — временный и постоянный прикус.
Во временном прикусе (молочные зубы) присутствует 8 резцов, 4 клыка и 8 моляров — всего 20 зубов. У детей они начинают прорезаться в возрасте от 3 месяцев. В период от 6 до 13 лет молочные зубы постепенно заменяются постоянными.
Постоянный прикус состоит из 8 резцов, 4 клыков, 8 премоляров и 8—12 моляров. В редких случаях наблюдаются дополнительные, сверхкомплектные зубы (как молочные, так и постоянные)[1]. Отсутствие третьих моляров, называемых «зубами мудрости» является нормой, а сами третьи моляры увеличивающимся числом учёных уже считаются атавизмом, но это на данный момент спорный вопрос.
Зуб расположен в альвеолярном отростке верхней челюсти или в альвеолярной части нижней, состоит из ряда твёрдых тканей (такие, как зубная эмаль, дентин, зубной цемент) и мягких тканей (пульпа зуба).
Анатомически различают коронку зуба (выступающую над десной часть зуба), корень зуба (часть зуба, расположенная глубоко в альвеоле, покрытая десной) и шейку зуба — различают клиническую и анатомическую шейки: клиническая соответствует краю десны, а анатомическая является местом перехода эмали в цемент, что означает, что анатомическая шейка является фактическим местом перехода коронки в корень. Примечательно, что клиническая шейка с возрастом смещается в сторону верхушки корня (апекса) (так как с возрастом происходит атрофия десны), а анатомическая — в противоположную (так как с возрастом эмаль истончается, а в области шейки может полностью истираться в силу того, что в области шейки её толщина гораздо меньше). Внутри зуба располагается полость, которая состоит из так называемых пульповой камеры и корневого канала зуба.
Через специальное (апикальное) отверстие, расположенное в верхушке корня, в зуб идут артерии, которые доставляют все необходимые вещества, вены, лимфатические сосуды, обеспечивающие отток лишней жидкости и участвующие в механизмах местной защиты, а также нервы, осуществляющие иннервацию зуба.
Корни зубов, которые погружены в альвеолярные лунки верхней и нижней челюстей, укрыты периодонтом, который являет собой специализированную фиброзную соединительную ткань, которая удерживает зубы в альвеолах. Основу периодонту составляют периодонтальные связки (лигаменты), которые связывают цемент с костным матриксом альвеолы. С биохимической точки зрения, основу периодонтальных лигаментов составляет коллаген типа I с некоторым количеством коллагена типа III. В отличие от других связок тела человека, связочный аппарат, которые формирует периодонт, сильно васкуляризованный. Толщина периодонтальных связок, которая у взрослого человека составляет примерно 0,2 мм, уменьшается в пожилом и старческом возрасте.
Зуб построен из трёх шаров кальцификованных тканей: эмали, дентина и цемента. Полость зуба заполнена пульпой. Пульпа окружена дентином — основной кальцификованной тканью. На выступающей части зуба дентин покрыт эмалью. Погружённые в челюсть корни зубов покрыты цементом.
Составные части зуба отличаются по функциональным назначениям и, соответственно, биохимическим составом, а также особенностями обмена веществ. Основными компонентами тканей является вода, органические соединения, неорганические соединения и минеральные компоненты.
Составные зуба | Эмаль | Дентин | Пульпа | Цемент |
---|---|---|---|---|
Вода | 2,3 | 13,2 | 30-40 | 36 |
Органические соединения | 1,7 | 17,5 | 40 | 21 |
Неорганические соединения | 96 | 69 | 20-30 | 42 |
Ca | 36,1 | 35,3 | 35,5 | 30 |
---|---|---|---|---|
Mg | 0,5 | 1,2 | 0,9 | 0,8 |
Na | 0,2 | 0,2 | 1,1 | 0,2 |
K | 0,3 | 0,1 | 0,1 | 0,1 |
P | 17,3 | 17,1 | 17,0 | 25,0 |
F | 0,03 | 0,02 | 0,02 | 0,01 |
Органические компоненты зуба — это белки, углеводы, липиды, нуклеиновые кислоты, витамины, ферменты, гормоны, органические кислоты.
Основу органических соединений зуба, безусловно, составляют белки, которые разделяют на растворимые и нерастворимые.
Растворимые белки тканей зуба: альбумины, глобулины, гликопротеины, протеогликаны, ферменты, фосфопротеины. Растворимые (неколлагеновые) белки характеризуются высокой метаболической активностью, выполняют ферментную (каталитическую), защитную, транспортную и ряд других функций. Самое высокое содержание альбуминов и глобулинов — в пульпе. Пульпа богата ферментами гликолиза, цикла трикарбоновых кислот, дыхательной цепи, пентозофосфатного пути расщепления углеводов, биосинтеза белка и нуклеиновых кислот.
К растворимым белкам-ферментам относятся два важных фермента пульпы — Щелочная и кислая фосфатазы, которые берут непосредственно участие в минеральном обмене тканей зуба.
Щелочная фосфатаза катализирует перенесение остатков фосфатной кислоты (фосфатанионов) с фосфорных эфиров глюкозы на органический матрикс. То есть, фермент берет участие в формировании ядер кристаллизации и тем самым способствует минерализации тканей зуба.
Кислая фосфатаза имеет противоположный, деминерализующий эффект. Она принадлежит к лизосомальным кислым гидролазам, которые усиливают растворение (всасывание) как минеральных, так и органических структур тканей зуба. Частичная резорбция тканей зуба является нормальным физиологическим процессом, но особенно она возрастает при патологических процессах.
Важную группу растворимых белков составляют гликопротеины. Гликопротеины являются белково-углеводными комплексами, которые содержат от 3—5 к нескольким сотням моносахаридных остатков и могут формировать от 1 до 10—15 олигосахаридных цепей. Обычно содержание углеводных компонентов в молекуле гликопротеинов редко превышает 30 % массы всей молекулы. В состав гликопротеинов тканей зуба входят: глюкоза, галактоза, моноза, фруктоза, N-ацетилглюкозами, N-ацетилнейраминовые (сиаловые) кислоты, которые не имеют регулярного поворота дисахаридных единиц. Сиаловые кислоты являются специфическим компонентом группы гликопротеинов — сиалопротеинов, содержание которых особенно высоко в дентине.
Одним из важнейших гликопротеинов зуба, как и костной ткани, является фибронектин. Фибронектин синтезируется клетками и секретируется в межклеточное пространство. Он имеет свойства «липкого» белка. Связываясь с углеводными группами сиалогликолипидов на поверхности плазматических мембран, он обеспечивает взаимодействие клеток между собой и компонентами межклеточного матрикса. Взаимодействуя с коллагеновыми фибрилами, фибронектин обеспечивает формирование перицеллюлярного матрикса. Для каждого соединения, с которым он связывается, фибронектин имеет свой, специфический так сказать центр связывания.
Содержание растворимых белков в тканях зуба меньше в сравнении с содержанием нерастворимых белков. Однако ткани зуба исключительно чувственны к уменьшению содержания именно растворимых белков. В частности, при кариесе в первую очередь нарушается обмен неколлагеновых белков.
Нерастворимые белки тканей зуба представлены зачастую двумя белками — это коллаген и специфический структурный белок эмали, который не растворяется в водных растворах ЭДТА (этилендиаминтетрауксусной) и соляной кислот. Благодаря высокой стойкости этот белок эмали выполняет роль скелета всей молекулярной архитектуры эмали, формируя каркас — «корону» на поверхности зуба.
Коллаген: особенности строения, роль в минерализации зуба. Коллаген является основным фибриллярным белком соединительной ткани и главным нерастворимым белком в тканях зуба. Как указано выше, его содержание составляет около трети всех белков организма. Больше всего коллагена в сухожилиях, связках, коже и тканях зуба.
Особенная роль коллагена в функционировании зубо-челюстной системы человека связана с тем, что зубы в лунках альвеолярных отростков фиксируются периодонтальными связками, которые сформированы именно коллагеновыми волокнами. При скорбуте (цинге), которая возникает из-за недостаточности в рационе питания витамина С (L-аскорбиновой кислоты), возникают нарушения биосинтеза и структуры коллагена, что уменьшает биомеханические свойства периодонтальной связки и других околозубных тканей, и, как следствие, расшатываются и выпадают зубы. К тому же, кровеносные сосуды становятся ломкими, возникают множественные точечные кровоизлияния (петехии). Собственно, кровоточивость десен и есть ранним проявлением скорбута, а нарушения в структуре и функциях коллагена являются первопричиной развития патологических процессов соединительной, костной, мышечной и других тканях.
В состав органического матрикса зуба входят моносахариды глюкоза, галактоза, фруктоза, маноза, ксилоза и дисахарид сахароза. Функционально важными углеводными компонентами органического матрикса являются гомо- и гетерополисахариды: гликоген, гликозаминогликаны и их комплексы с белками: протеогликаны и гликопротеины.
Гомополисахарид гликоген выполняет три основных функции в тканях зуба. Во-первых, он является основным источником энергии для процессов формирования ядер кристаллизации и локализуется в местах формирования центров кристаллизации. Содержание гликогена в ткани прямо пропорционально интенсивности процессов минерализации, поскольку характерной особенностью тканей зуба является превалирование анаеробных процессов энергоформирования — гликогенолиза и гликолиза. Даже при условии достаточной обеспеченности кислородом, 80 % энергетических потребностей зуба покрывается за счет анаеробного гликолиза, а соответственно и расщеплением гликогена.
Во-вторых, гликоген является источником фосфорных эфиров глюкозы — субстратов щелочной фосфатазы, фермента, который отщепляет ионы фосфорной кислоты (фосфат-ионы) от глюкозомонофосфатов и переносят их на белковой матрице, то есть инициирует формирование неорганической матрицы зуба. Кроме того, глюкоген также является источником глюкозы, которая превращается в N-ацетилглюкозамин, N-ацетилгалактозамин, глюкоруновую кислоту и другие производные, которые берут участие в синтезе гетерополисахаридов — активных компонентов и регуляторов минерального обмена в тканях зуба.
Гетерополисахариды органического матрикса зуба представлены гликозаминогликанами: гиалуроновой кислотой и хондроитин-6-сульфатом. Большое количество этих гликозаминогликанов перебывает в связанном с белками состоянии, формируя комплексы разной ступени сложности, которые существенно отличаются по составу белка и полисахаридов, то есть гликопротеины (в комплексе значительно больше белкового компонента) и протеогликаны, которые содержат 5—10 % белка и 90—95 % полисахаридов.
Протеогликаны регулируют процессы агрегации (рост и ориентацию) коллагеновых фибрил, а также стабилизируют структуру коллагеновых волокон. Благодаря высокой гидрофильности протеогликаны отыгрывают роль пластификаторов коллагеновой сетки, повышая её способность к растягиванию и набуханию. Наличие высокого количества кислотных остатков (ионизированных карбоксильных и сульфатных групп) в молекулах гликозаминогликанов обуславливает полианионический характер протеогликанов, высокую способность связывать катионы и тем самым брать участие в формировании ядер (центров) минерализации.
Важным компонентом тканей зуба является цитрат (лимонная кислота). Содержание цитрата в дентине и эмали — до 1 %. Цитрат, благодаря высокой способности к комплексоформированию, связывает ионы , формируя растворимую транспортную форму кальция. Кроме тканей зуба, цитрат обеспечивает оптимальное содержание кальция в сыворотке крови и слюне, тем самым регулируя скорость процессов минерализации и деминерализации.
Содержание липидов в тканях зуба колеблется в пределах 0,2—0,6 %. Фосфолипиды, которые несут негативный заряд, могут связывать ионы и другие катионы, и таким образом брать участие в формировании ядер кристаллизации. Липиды могут выполнять роль стабилизатора аморфного фосфата кальция.
Нуклеиновые кислоты содержатся, в основном, в пульпе зуба. Значительное увеличение содержание нуклеиновых кислот, в частности, РНК, наблюдается остеобластах и одонтобластах в период минерализации и реминерализации зуба и связано с увеличением синтеза белков этими клетками.
Минеральную основу тканей зуба составляют кристаллы разных апатитов. Основными являются гидроксипатит и восьмикальциевый фосфат . Другие виды апатитов, которые присутствуют в тканях зуба, приведены в следующей таблице:
Апатит | Молекулярная формула |
---|---|
Гидроксиапатит | |
Восьмикальциевый фосфат | |
Карбонатный апатит | или |
Хлоридный апатит | |
Стронциевый апатит | |
Фторапатит |
Отдельные виды апатитов зуба различаются по химическим и физически свойствам — прочностью, способностью растворяться (разрушаться) под действием органических кислот, а их соотношения в тканях зуба обуславливается характером питания, обеспеченностью организма микроэлементами и т. д. Среди всех апатитов наивысшую стойкость имеет фторапатит. Образование фторапатита повышает прочность эмали, снижает её приницаемость и повышает резистентность к кариесогенных факторов. Фторапатит в 10 раз хуже растворяется в кислотах, чем гидроксиапат. При достаточном количестве фтора в питании человека значительно уменьшается количество случаев заболевания кариесом.
Биохимическая характеристика отдельных тканных компонентов зуба
Эмаль — наиболее твёрдая минерализованная ткань, которая размещается поверх дентина и внешне покрывает коронку зуба. Эмаль составляет 20—25 % зубной ткани, толщина её шара максимальная в участке жевательных вершин, где она достигает 2,3—3,5 мм, а на латеральных поверхностях — 1,0—1,3 мм.
Высокая твердость эмали обуславливается высокой ступенью минерализации ткани. Эмаль содержит 96 % минеральных веществ, 1,2 % органических соединений и 2,3 % воды. Часть воды находится в связанной форме, формируя гидратную оболочку кристаллов, а часть (в форме свободной воды) заполняет микропространства.
Основным структурным компонентом эмали являются эмалевые призмы диаметром 4-6мкм, общее количество которых колеблется от 5 до 12 млн в зависимости от размера зуба. Эмалевые призмы состоят из упакованных кристаллов, зачастую гидроксиапатита . Другие виды апатитов представлены незначительно: кристаллы гидроксиапатита в зрелой эмали приблизительно в 10 раз больше от кристаллов в дентине, цементе и костной ткани.
В составе минеральных веществ эмали кальций составляет 37 %, фосфор — 17 %. Свойства эмали значительной мерой зависят от соотношения кальция и фосфора, которое меняется с возрастом и зависит от ряда факторов. В эмали зубов взрослых людей соотношения Ca/P составляет 1,67. В эмали детей это соотношение ниже. Данный показатель также уменьшается при деминерализации эмали.
Дентин — минерализованная, бесклеточная, бессосудистая ткань зуба, которая образует основную его массу и по строению принимает промежуточное положение между костной тканью и эмалью. Он твёрже кости и цемента, но в 4—5 раз мягче эмали. Зрелый дентин содержит 69 % неорганических веществ, 18 % органических и 13 % воды (что соответственно в 10 и в 5 раз больше, чем у эмали).
Дентин построен из минерализованного межклеточного вещества, пронзенной многочисленными дентиновыми каналами. Органический матрикс дентина составляет около 20 % общей массы и по составу близок к органическому матриксу костной ткани. Минеральную основу дентина составляют кристаллы апатитов, которые откладываются в виде зерен и шарообразных формирований — калькосферитов. Кристаллы откладываются между коллагеновыми фибриллами, на их поверхности и внутри самих фибрил.
Пульпа зуба — это сильно васкуляризированная и иннервированная специализированная волокнистая соединительная ткань, которая заполняет пульповую камеру коронки и канала корня. Она состоит из клеток (одонтобластов, фибробластов, микрофагов, дендритных клеток, лимфоцитов, тучных клеток) и межклеточного вещества, а также содержит волокнистые структуры.
Функция клеточных элементов пульпы — одонтобластов и фибробластов — состоит в образовании основного межклеточного вещества и синтезе коллагеновых фибрилл. Поэтому клетки имеют мощный белоксинтезирующий аппарат и синтезируют большое количество коллагена, протеогликанов, гликопротеинов и других водорастворимых белков, в частности, альбуминов, глобулинов, ферментов. В пульпе зуба обнаружена высокая активность ферментов углеводного обмена, цикла трикарбоновых кислот, дыхательных ферментов, щелочной и кислой фосфатазы и т. д. Активность ферментов пентозофосфатного пути особенно высока в период активной продукции дентина одонтобластами.
Пульпа зуба выполняет важные пластические функции, участвуя в образовании дентина, обеспечивает трофику дентина коронки и корня зуба. К тому же, за счет наличия в пульпе большого количества нервных окончаний пульпа обеспечивает передачу в ЦНС необходимую сенсорную информацию, которая объясняет очень высокую болевую чувствительность внутренних тканей зуба к патологическим раздражителям.
Основу минерального обмена тканей зуба составляют три взаимосвязанных процесса, которые постоянно протекают в тканях зуба: минерализация, деминерализация и реминерализация.
Минерализация зуба — это процесс образования органической основы, прежде всего коллагена, и насыщения её солями кальция. Минерализация особенно интенсивна в период прорезывания зубов и формирования твердых тканей зуба. Зуб прорезается с неминерализованной эмалью. Различают две основные стадии минерализации.
Первая стадия — образование органической, белковой матрицы. Проводящую роль на этой стадии отыгрывает пульпа. В клетках пульпы, одонтобластах и фибробластах синтезируются и освобождаются в клеточный матриц фибрилы коллагена, неколлагеновые белки протеогликаны (остеокальцин) и гликозаминогликаны. Коллаген, протеогликаны и гликозаминогликаны формируют поверхность, на которой будет происходить формирование кристаллической решетки. В этой процессе протеогликаны отыгрывают роль пластификаторов коллагена, то есть повышают его способность к набуханию и увеличивают его общую поверхность. Под действие лизосомальных ферментов, которые освобождаются в матрикс, гетерополисахариды протеогликанов расщепляются с образованием высокореактивных анионов, которые способны связывать ионы и другие катионы.
Вторая стадия — кальцификация, отложение апатитов на матрице. Ориентированный рост кристаллов начинается в точках кристаллизации или в точках нуклеации — в участках с высокой концентрацией ионов кальция и фосфатов. Локально высокая концентрация этих ионов обеспечивается способностью всех компонентов органической матрицы связывать кальций и фосфаты. В частности: в коллагене гидроксильные группы остатков серина, треонина, тирозина, гидроксипролина и гидроксилизина связывают фосфат-ионы; свободные карбоксильные группы остатков дикарбоновых кислот в коллагене, протеогликанах и гликопротеинах связывают ионы ; остатки г-карбоксиглутаминовой кислоты кальцийсвязывающего белка — остеокальцина (кальпротеина) связывают ионы . Ионы кальция и фосфата концентрируются вокруг ядер кристаллизации и образуют первые микрокристаллы.
Развитие зубов у эмбриона человека начинается примерно на 7 неделе. В области будущих альвеолярных отростков возникает утолщение эпителия, который начинает врастать в виде дугообразной пластинки в мезенхиму.[2] Далее эта пластинка разделяется на переднюю и заднюю, в которой формируются зачатки молочных зубов. Зубные зачатки постепенно обосабливаются от окружающих тканей, а затем в них появляются составные части зуба таким образом, что клетки эпителия дают начало эмали, из мезенхимальной ткани образуются дентин и пульпа, а из окружающей мезенхимы развивается цемент и корневая оболочка.
Пульпа растущего зуба играет не только питательную роль, у детей она также является источником стволовых клеток, важных для образования дентина.[3] Угнетение клеток пульпы, а соответственно и роста зубов у детей может происходить под действием высоких доз местных анестетиков, применяемых в стоматологии.[3]
Зубы человека не регенерируют, в то время как у некоторых животных, например, акул, они обновляются постоянно в течение всей жизни.
По основной функции зубы делятся на 4 типа:
Зубные пасты разделяются на две большие группы — гигиенические и лечебно-профилактические. Первая группа предназначена только для очищения зубов от налёта еды, а также придания полости рта приятного запаха. Такие пасты рекомендуются обычно тем, у кого здоровые зубы, а также нет причин для возникновения болезней зубов, и кто регулярно посещает стоматолога.
Основная масса зубных паст относится к второй группе — лечебно-профилактических. Их назначением, кроме очищения поверхности зубов, является подавление микрофлоры, которая вызывает кариес и пародонтит, реминерализация зубной эмали, уменьшение воспалительных явлений при заболеваниях пародонта, а также отбеливания зубной эмали.
Выделяют противокариозные пасты, которые содержат кальций и фторосодержащие зубные пасты, а также зубные пасты с противовоспалительным действием и отбеливающие пасты.
Гигиена полости рта является средством предупреждения кариеса зубов, гингивита, пародонтоза, неприятного запаха из полости рта (галитоза) и других стоматологических заболеваний. Она включает в себя как ежедневную чистку, так и профессиональную, которую производит врач-стоматолог.
Эта процедура включает в себя удаление зубного камня (минерализированного налёта), который может образоваться даже при тщательных чистках щеткой и зубной нитью.
Для ухода за первыми зубами ребёнка рекомендуется применять специальные дентальные салфетки.
Предметы личной гигиены полости рта: зубные щётки, зубные нити (флосы), скребок для языка.
Средства гигиены: зубные пасты, гели, ополаскиватели.
![]() |
Зубы человека в Викисловаре |
---|---|
![]() |
Зубы человека на Викискладе |
![]() |
Зубы человека в Викиновостях |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .