Долгосрочное среднее количество L заявок в стационарной системе равно долгосрочной средней интенсивности λ входного потока, умноженной на среднее время W пребывания заявки в системе. Алгебраически, L=λW.
Иными словами, при заданной интенсивности входного потока время в системе пропорционально количеству заявок в системе. Хотя результат и выглядит интуитивно понятным, он замечателен, так как выраженная связь не опосредована распределением поступления, распределением обслуживания, порядком обслуживания или другими посторонними характеристиками[3].
Закон применим к любым системам, в частности, к подсистемам[4]. Например, очередь клиентов в банке может быть одной подсистемой, а каждый из кассиров — другой. Закон Литтла применим как к каждой из подсистем, так и ко всей системе в целом. От системы требуется лишь стационарность и отсутствие вытесняющей многозадачности. Наличие этих свойств исключает переходные состояния, в том числе запуск и остановку.
В некоторых случаях мы можем не только математически соотнести не только средние количество и ожидание, но и их целые распределения (с моментами)[5].
В статье от 1954 года закон Литтла приведён как само собой разумеющийся, доказательство отсутствовало[6][7]. Формула L=λW впервые опубликована Филипом М. Морсом, который предложил читателям найти ситуацию, в которой отношение бы не выполнялось[6][8]. В 1961 году Литтл предложил своё доказательство, тем самым продемонстрировав, что таких ситуаций не существует[9]. Затем более простые доказательства опубликовали Джуэлл[10] и Филон[11]. Ещё одно более интуитивное доказательство вышло из-под пера Стидема в 1972 году[12][13].
Примечания
↑ Alberto Leon-Garcia.Probability, statistics, and random processes for electrical engineering.— 3rd.— Prentice Hall, 2008.— ISBN 0-13-147122-8.
↑ Allen, Arnold A.Probability, Statistics, and Queueing Theory: With Computer Science Applications.— Gulf Professional Publishing, 1990.— P.259.— ISBN 0120510510.
↑ Simchi-Levi, D.; Trick, M. A. (2013). “Introduction to "Little's Law as Viewed on Its 50th Anniversary"”. Operations Research. 59 (3): 535. DOI:10.1287/opre.1110.0941.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии