Задача о предписанной скалярной кривизне заключается в построении римановой метрики с заданной скалярной кривизной. Эта задача в основном решена в статье Каждана и Уорнера.[1]
Для данного закрытого, гладкого многообразия и гладкой вещественной функции построить риманову метрику на , для которой скалярная кривизна равна .
Предположение о том, что должна быть отрицательна в каких-то точках, необходимо, поскольку не все многообразия допускают метрику со строго положительной скалярной кривизной. Например, таким является трёхмерный тор. Однако верно следующее.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .