WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Задача Тарского по школьной алгебре спрашивает, есть ли тождество над целыми положительными числами с использованием сложения, умножения и возведения в степень, которое не следует из набора тождеств, преподаваемых в школе.

Формулировка

Верно ли, что из следующих одиннадцати аксиом, которые мы будем называть школьными аксиомами:

  1. x + y = y + x
  2. (x + y) + z = x + (y + z)
  3. x · 1 = x
  4. x · y = y · x
  5. (x · y) · z = x · (y · z)
  6. x · (y + z) = x · y + x ·z
  7. 1x = 1
  8. x1 = x
  9. xy + z = xy · xz
  10. (x · y)z = xz · yz
  11. (xy)z = xy · z.

следует любое тождество над целыми положительными числами с использованием сложения, умножения и возведения в степень?

История

Этот список из одиннадцати аксиом был выписан Рихардом Дедекиндом,[1] хотя все эти тождества были известны задолго до этого.

Задача о выводимости всех тождеств была сформулирован Альфредом Тарским. Точная формулировка использует теорию моделей. В 1980-х она стала известна как задача Тарского по школьной алгебре.

В 1980 году Алекс Вилки доказал, что тождество

не выводится из набора школьных аксиом.[2]

Примечания

  1. Richard Dedekind, Was sind und was sollen die Zahlen?, 8te unveränderte Aufl. Friedr. Vieweg & Sohn, Braunschweig (1960).
  2. A.J. Wilkie, On exponentiation a solution to Tarski's high school algebra problem, Connections between model theory and algebraic and analytic geometry, Quad. Mat., 6, Dept. Math., Seconda Univ. Napoli, Caserta, (2000), pp.107129.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии