WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Задача Буземана — Петти — вопрос выпуклой геометрии, сформулированный Буземаном и Петти в 1956 году.

Правда ли, что симметричное выпуклое тело с бо́льшими центральными сечениями гиперплоскостями имеет бо́льший объём?

Ответ положительный в размерностях , и отрицательный в размерностях .

Задача знаменита тем, что в размерности , был дан сначала (неправильный) отрицательный ответ, a через несколько лет положительный. При этом обе статьи были опубликованы одним и тем же автором в одном из самых престижных математических журналов, Annals of Mathematics.

Формулировка

Пусть и — выпуклые тела в -мерном евклидовом пространстве с общим центром симметрии такие, что

для каждой гиперплоскости , проходящей через центр симметрии. Верно ли, что

История

  • В размерности 2 задача тривиальна, ответ положительный.
  • 1956 Буземан и Петти показали, что ответ будет положительным, если первое тело является шаром.
  • 1975 Лармен и Роджерс[en] построили контрпример в размерностях .
  • 1986, Кит Болл доказал, что взяв куб как первое тело и подходящий шар как второе, получаем контрпример в размерностях .
  • 1988, Лютвак показал что ответ на задачу в данной размерности положителен тогда и только тогда, когда все симметричные выпуклые тела в этой размерности являются телами сечений.
  • Джиэннопулос и Бурген независимо построили контрпримеры в размерностях .
  • Пэпэдимитракис и Гарднер независимо построили контрпримеры в размерностях 5 и 6.
  • 1994 Гарднер дал положительный ответ в размерности .
  • 1994 Гаоюн Чжан опубликовал работу (в Annals of Mathematics), в которой в частности утверждал, что в размерности ответ отрицательный.
  • 1997 Александр Колдобский опроверг утверждение Гаоюн Чжана.
  • 1999 После изучения, результатов Колдобского, Чжан быстро доказал, что на самом деле в размерности ответ утвердительный. Эта более поздняя работа была также опубликована в Annals of Mathematics.

Вариации и обобщения

  • Теорема единственности Минковского утверждает, что если два симметричных выпуклых тела имеют равновеликие сечения любой гиперплоскостью, проходящий через их общий центр, то эти два тела равны.
  • Задача Шепарда — аналогичная задача, в которой вместо сечений, рассматриваются проекции на все возможные гиперплоскости.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии