Задача Шепарда — вопрос выпуклой геометрии о сравнении объёмов двух симметричных выпуклых тел при условии, что в любом направлении площадь проекции первого не превосходит площади проекции второго.
Вопрос был сформулирован Джеффри Шепардoм[en] в 1964 году.
Ответ на этот вопрос — «да» в размерности 2 и «нет» в размерности 3 и выше. Последнее было доказано независимо Петти и Шнайдером в 1967 году.
Пусть и — два центрально-симметричных выпуклых тела в -мерном евклидовом пространстве. Предположим, площадь ортогональной проекции на произвольную гиперплоскость не превышает площади ортогональной проекции на . Верно ли, что объём не превышает объёма ?
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .