WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Длина модуля — способ измерения «размера» модуля, обобщающий понятие размерности векторного пространства. Длина определяется как максимальная длина цепочки вложенных подмодулей.

Определение

Пусть M — (левый или правый) модуль над кольцом R. Мы говорим что длина цепочки его подмодулей вида

равна n, то есть считаем число строгих включений, а не число подмодулей. Длина модуля M — это наибольшая длина цепочки среди всех цепочек его подмодулей. Если наибольшей длины цепочки не существует, длина M равна бесконечности.

Примеры

  • Единственный модуль длины 0 — нулевой модуль. Модули длины 1 называются простыми.
  • Для конечномерного векторного пространства длина совпадает с размерностью.
  • Длина циклической группы равна числу множителей в разложении n на простые.

Свойства

Модуль имеет конечную длину тогда и только тогда, когда он является артиновым и нётеровым.

Пусть

является короткой точной последовательностью модулей. В этом случае M имеет конечную длину тогда и только тогда, когда L и N имеют конечную длину, причем длина M равна сумме их длин. В частности, длина прямой суммы модулей равна сумме длин компонент.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии