WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Диагональный аргумент (диагональный метод Кантора) — доказательство теоремы Кантора о том, что множество всех подмножеств данного множества имеет бо́льшую мощность, чем само множество. В частности, множество всех подмножеств натурального ряда имеет мощность большую, чем алеф-0, и, значит, не является счётным[1]. Доказательство этого факта основано на следующем диагональном аргументе:

Диагональный аргумент Кантора: Каждое множество записывается как последовательность 0 и 1, где 1 на месте значит, что является элементом множества. Красным выделена последовательность на диагонали. Последовательность является дополнением этой последовательности: . Тогда отличается от всех хотя бы в одном месте (а именно — в месте ).


Пусть есть взаимнооднозначное соответствие, которое каждому элементу множества ставит в соответствие подмножество множества Пусть будет множеством, состоящим из элементов таких, что (диагональное множество). Тогда дополнение этого множества не может быть ни одним из А следовательно, соответствие было не взаимнооднозначным.

Кантор использовал диагональный аргумент при доказательстве несчётности действительных чисел в 1891 году. (Это не первое его доказательство несчётности действительных чисел, но наиболее простое)[2].

Диагональный аргумент использовался во многих областях математики. Так, например, он является центральным аргументом в теореме Гёделя о неполноте, в доказательстве существования неразрешимого перечислимого множества и, в частности, в доказательстве неразрешимости проблемы остановки[3].

Примечания

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии