Рисунок, показывающий векторы, используемые в ДФОС. Все векторы — единичной длины. направлен на источник света. направлен на наблюдателя. — нормаль к поверхности.
Двулучевая функция отражательной способности (ДФОС, англ.Bidirectional reflectance distribution function — BRDF) — четырёхмерная функция, определяющая, как свет отражается от непрозрачной поверхности. Параметры функции — направление входящего света и направление выходящего света , которые определены относительно нормали к поверхности . Функция возвращает отношение отражённой яркости вдоль к освещённости на поверхности с направления .
Стоит заметить, что каждое направление само по себе зависит от азимутального угла и зенитного угла (зенитный также называют полярным углом), вследствие чего ДФОС является функцией четырёх переменных. ДФОС измеряется в ср−1, где стерадиан (ср) — единица измерения телесного угла.
Определение
Впервые ДФОС была определена Эдвардом Никодемусом в 1965 году[1]. Современное определение данной функции таково:
Пространственная функция двунаправленного распределения отражения (англ. Spatially-varying Bidirectional Reflectance Distribution Function, SVBRDF) — это 6-мерная функция, , где описывает 2D расположение на поверхности объекта.
Двунаправленная текстурная функция (англ. Bidirectional Texture Function, BTF) подходит для моделирования неровных поверхностей и имеет те же параметры, что и SVBRDF; кроме того, BTF включает рассеивающие эффекты, такие как тени, внутренние отражения и подповерхностные рассеивания. Функции, определённые BTF в каждой точке поверхности, называются видимыми BRDF.
Функция двунаправленного поверхностного рассеивания отражения (англ. Bidirectional scattering distribution function, BSSRDF) — более обобщённая 8-мерная функция , в которой свет, падающий на поверхность, может рассеяться внутри неё и выйти из другой точки.
Во всех этих случаях зависимость от длины волны не учитывалась и была скрыта в каналах RGB. В действительности же ДФОС зависит от длины волны, и для подсчёта таких эффектов, как иризация или люминесценция, зависимость от длины волны должна быть задана явно: .
ДФОС в физике
ДФОС в физике обладают дополнительными свойствами, например,
ДФОС (BRDF) является основным инструментом при моделировании шероховатых поверхностей с заданными свойствами, такими как: необходимые углы отражения, углы наклона микрограней шероховатых поверхностей и их светопоглощающая и светоотражающая способности. Такие поверхности применяются в изготовлении внешних защитных слоев солнечных батарей, солнечных коллекторов и космического оборудования.
Модели
ДФОС могут быть напрямую построены по реальным объектам, используя откалиброванные камеры и источники света[2]; тем не менее, было предложено много феноменологичных и аналитических моделей, включая модель отражения Ламберта, часто используемых в компьютерной графике. Некоторые полезные особенности новейших моделей:
Войцех и обнаружил, что интерполяция измеренной выборки приводит к реалистичным результатам и проста для понимания.[3]
Примеры
Модель отражения Ламберта, превосходно отображающая диффузные поверхности (зависит только от зенитного угла падения ).
Ломмеля-Зелигера, отражение Луны и Марса.
Модель Фонга, феноменологическая модель, похожая на отражение от пластмассовой поверхности.[4]
Модель Блинн-Фонга, похожая на модель Фонга, но подсчитывающая некоторые величины путём интерполяции, тем самым снижая количество вычислений.[5]
Модель Торранса-Спарроу, модель, представляющая поверхность как распределение идеально отражающих граней.[6]
Модель Кука-Торренса, модель отражающих микрограней (Торренса-Спарроу) с учётом длины волны, таким образом учитывая смещение цвета.[7]
Анизонтропная модель Варда, модель отражающих микрограней с функцией распределения, зависящей от тангенсальной ориентации (ориентация по отношению к касательной) поверхности (вдобавок к нормали к поверхности).[8]
Модель Орена-Наяра, модель идеально рассеивающих (лучше, чем зеркальные) микрограней.[9]
Модель Эшкмина-Ширли, включающая анизонтропное отражение.[10]
Встроенная модель Лафортуна, обобщение модели Фонга с несколькими отражающими долями, предназначенная для подготовки измеренных величин.[12]
Модель Лебедева, сеточно-аналитическое приближение ДФОС.[13]
Модель ДФОС глянцевитой краски Б. К. П. Хорна.[14]
Измерение
Традиционно ДФОС измерения проводились для конкретных направлений света и обзора, используя гониорефлектометр. Довольно плотные измерения ДФОС на таком оборудовании занимают слишком много времени. Одним из первых улучшений было использоание полупрозрачного зеркала и цифровой камеры для единовременного взятия множества ДФОС-образцов плоского участка[8]. С тех пор многие исследователи изобрели свои устройства для эффективного замерения ДФОС по реальным образцам, и это всё ещё остаётся большой областью для исследований.
Альтернативным способом является восстановление ДФОС по фотоизображениям с широким динамическим диапазоном яркости. Стандартным путём является получение выборки значений (или облака) точек ДФОС по фотоизображению и оптимизация этой выборки с использованием одной из моделей ДФОС.[15]
↑ K. Torrance and E. Sparrow. Theory for Off-Specular Reflection from Roughened Surfaces. J. Optical Soc. America, vol. 57. 1976. pp. 1105—1114.
↑ R. Cook and K. Torrance. «A reflectance model for computer graphics». Computer Graphics (SIGGRAPH '81 Proceedings), Vol. 15, No. 3, July 1981, pp. 301—316.
1 2 Ward, Gregory J.(1992). "Measuring and modeling anisotropic reflection".Proceedings of SIGGRAPH: 265–272. DOI:10.1145/133994.134078. Проверено 2008-02-03.
↑ Michael Ashikhmin, Peter Shirley, An Anisotropic Phong BRDF Model, Journal of Graphics Tools 2000
↑ X. He, K. Torrance, F. Sillon, and D. Greenberg, A comprehensive physical model for light reflection, Computer Graphics 25 (1991), no. Annual Conference Series, 175—186.
↑ E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, Non-linear approximation of reflectance functions. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pp. 117—126. ACM SIGGRAPH, Addison Wesley, August 1997.
↑ Марр Д.Зрение. Информационный подход к изучению представления и обработки зрительных образов..— Москва: Радио и связь, 1987.— С.252.; Horn B. K. P.Understanding image intensities.// Artificial Intelligence.— 1977.— № 8.— С. 201-231.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии