В теории графов графом Халина называется некоторый вид планарного графа, который строится из дерева, имеющего по меньшей мере 4 вершины, ни одна из которых не имеет в точности двух соседей. Дерево рисуется на плоскости так, что никакие рёбра не пересекаются, затем добавляются рёбра, соединяющие все его листья в цикл[1]. Графы Халина названы по имени немецкого математика Рудольфа Халина, изучавшего их в 1971 году[2], но кубические графы Халина изучались за столетие до этого английским математиком Томасом Киркманом[3].
Граф Халина строится следующим образом: пусть — вложенное в плоскость дерево с четырьмя или более вершинами, такой, что никакая вершина графа не имеет степень два (то есть, никакая вершина не имеет в точности двух соседей). Граф Халина создаётся путём добавления к графу цикла, проходящего через все листья таким образом, что расширяющий путь остаётся планарным.
Звезда — это дерево с единственной внутренней вершиной. Применяя построение Халина получим колесо, граф пирамиды. Граф треугольной призмы является также графом Халина — его можно нарисовать так, что одна из его прямоугольных граней будет внешним циклом, а оставшиеся рёбра образуют дерево с четырьмя листьями, двумя внутренними вершинами и пятью рёбрами.
Граф Фрухта, один из двух наименьших кубических графов с нетривиальными автоморфизмами, является также графом Халина.
Любой граф Халина 3-связен, что означает, что нельзя разбить граф на два графа путём удаления двух вершин. Он также рёберно минимально 3-связен, что означает, что после удаления любого ребра граф перестаёт быть 3-связен[1]. По теореме Штайница, будучи 3-связным планарным графом, граф Халина можно представить в виде множества вершин и рёбер выпуклого многогранника. Таким образом, он является графом многогранника, но в этом случае, как и для любого графа многогранника, его вложение в плоскость единственно с точностью до выбора грани, которая будет его внешней гранью[1].
Любой граф Халина является гамильтоновым графом и любое ребро принадлежит гамильтонову циклу. Более того, любой граф Халина остаётся гамильтоновым после удаления любой вершины [4]. Поскольку любое дерево без вершин степени 2 содержит два листа с одним родителем, любой граф Халина содержит треугольник. В частности, граф Халина не может быть ни графом без треугольников, ни двудольным графом. Более строго, любой граф Халина является почти панциклическим, в том смысле, что он имеет циклы всех длин от 3 до n с возможным исключением одной чётной длины. Более того, любой граф Халина остаётся почти панциклическим после стягивания одного ребра, и любой граф Халина без внутренних вершин степени три является панциклическим [5].
Любой граф Халина имеет древесную ширину максимум три [6]. Таким образом, многие задачи оптимизации, являющиеся NP-полными для произвольных графов, такие как нахождение независимого множества, для графов Халина можно решить за линейное время при использовании динамического программирования[7].
Слабый двойственный граф вложенного планарного графа имеет вершины, соответствующие граням планарного графа и рёбра, соответствующие смежным граням (слабый двойственный получается из двойственного путём удаления вершины, соответствующей внешней грани). Слабый двойственный граф графа Халина всегда двусвязен и внешнепланарен. Это свойство можно использовать для характеризации графов Халина — вложенный в плоскость планарный граф является графом Халина с циклом через листья как внешней грани вложения тогда и только тогда, когда его слабый двойственный двусвязен и внешнепланарен[8].
В 1971 году Халин (Halin) предложил графы (получившие название графов Халина) как класс минимальных 3-вершинно-связных графов — для каждого ребра графа его удаление уменьшает связность[2]. Эти графы приобрели особое значение, когда выяснилось, что многие алгоритмические задачи, решение которых нереально для произвольных планарных графов, могут быть решены эффективно на графах Халина[4][8], что впоследствии объяснено как следствие их малой ширины дерева[6][7].
До работ Халина задачей перечисления кубических графов Халина занимался в 1856 году Томас Киркман[3], а в 1965 году — Ганс Радемахер[9] Радемахер называл эти графы основанными на многранниках. Он определил их как кубические графы многогранников с f гранями, у которых одна из граней имеет f − 1 рёбер. Графы, удовлетворяющие этому определению — в точности кубические графы Халина.
Графы Халина также иногда называют многогранниками без крыши[4] но, как и название «основанные на многранниках» это название можно отнести к кубическим графам Халина[10]. Выпуклые многогранники, графами которых являются графы Халина, называют также куполами[11].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .