WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Large Hadron Collider

Фрагмент LHC, сектор 3-4
Тип Синхротрон
Назначение Коллайдер
Страна Швейцария/ Франция
Лаборатория ЦЕРН
Годы работы 2008 -
Эксперименты
Технические параметры
Частицы p×p, Pb82+×Pb82+
Энергия 6,5 ТэВ
Периметр/длина 26 659 м
Эмиттансы 0,3 нм
Светимость 2•1034 см−2c−1
Прочая информация
Географические координаты 46°14′ с. ш. 6°03′ в. д. HGЯO
Сайт home.cern/topics/large-h…
public.web.cern.ch/publi…
 Large Hadron Collider на Викискладе

Большо́й адро́нный колла́йдер, сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тысяч учёных и инженеров более чем из 100 стран[1].

«Большим» назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м[2]; «адронным» — из-за того, что ускоряет адроны: протоны и тяжелые ядра атомов; «коллайдером» (англ. collider — сталкиватель) — из-за того, что два пучка ускоренных частиц сталкиваются во встречных направлениях в специальных местах столкновения — внутри детекторов элементарных частиц[3].

Детекторы элементарных частиц, предускорители БАК, ускорители БАК.
Траектории протонов p и ионов свинца Pb начинаются в линейных ускорителях частиц (в точках p и Pb, соответственно). Далее частицы ускоряются в бустере протонного синхротрона (PS), далее в протонном суперсинхротроне (SPS) и, наконец, в кольцевых ускорителях БАК. Детекторы TOTEM и LHCf, отсутствующие на схеме, находятся рядом с детекторами CMS и ATLAS соответственно

Google Street View в сентябре 2013 года получил панорамные снимки коллайдера[4].

Поставленные задачи

Основной источник: [5][6]

Главная задача Большого адронного коллайдера — достоверно обнаружить хоть какие-нибудь отклонения от Стандартной модели[7].

Современное состояние в физике элементарных частиц

Карта с нанесённым на неё расположением Коллайдера

В конце 1970-х годов физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий — сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

Поиск Новой физики

Как сказано выше, СМ не может считаться окончательной теорией элементарных частиц. Она должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». Главная задача Большого адронного коллайдера — получить хотя бы первые намеки на то, что это более глубокая теория[8].

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее были невозможны и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» — например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

Изучение топ-кварков

Топ-кварк — самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона[9], его масса составляет 173,1 ± 1,3 ГэВ/c². Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе — Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса. Один из наиболее важных каналов рождения бозона Хиггса в БАК — ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, предварительно необходимо изучение свойств самих топ-кварков.

Изучение механизма электрослабой симметрии

Диаграммы Фейнмана, показывающие возможные варианты рождения W- и Z-бозонов, которые в совокупности образуют нейтральный бозон Хиггса

Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса — частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как поправки к массе[10]. Сам бозон нестабилен и имеет большу́ю массу (более 120 ГэВ / c²). На самом деле, физиков интересует не столько сам бозон Хиггса, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия.

Изучение кварк-глюонной плазмы

Ожидается, что примерно один месяц в год будет проходить в ускорителе в режиме ядерных столкновений. В течение этого месяца коллайдер будет разгонять и сталкивать в детекторах не протоны, а ядра свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики.

Моделирование процесса рождения бозона Хиггса в детекторе CMS

Поиск суперсимметрии

Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» — теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».

Изучение фотон-адронных и фотон-фотонных столкновений

Электромагнитное взаимодействие частиц описывается как обмен (в ряде случаев виртуальными) фотонами. Другими словами, фотоны являются переносчиками электромагнитного поля. Протоны электрически заряжены и окружены электростатическим полем, соответственно это поле можно рассматривать как облако виртуальных фотонов. Всякий протон, особенно релятивистский протон, включает в себя облако виртуальных частиц как составную часть. При столкновении протонов между собой взаимодействуют и виртуальные частицы, окружающие каждый из протонов. Математически процесс взаимодействия частиц описывается длинным рядом поправок, каждая из которых описывает взаимодействие посредством виртуальных частиц определённого типа (см.: диаграммы Фейнмана). Таким образом, при исследовании столкновения протонов косвенно изучается и взаимодействие вещества с фотонами высоких энергий, представляющее большой интерес для теоретической физики[11]. Также рассматривается особый класс реакций — непосредственное взаимодействие двух фотонов, которые могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом.

В режиме ядерных столкновений, из-за большого электрического заряда ядра, влияние электромагнитных процессов имеет ещё большее значение.

Проверка экзотических теорий

Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны сами состоят из частиц, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных построений.

Предлагается осуществлять поиск параллельных вселенных. По мнению учёных для этих целей необходимо создание в БАК мини-чёрных дыр. Планируется, после модернизации, увеличение возможности коллайдера работать с энергиями до 14 ТэВ.[12]

Другое

Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

Технические характеристики

Ускоритель рассчитывался на столкновения протонов с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14⋅1012 электронвольт) в системе центра масс налетающих частиц, а также на столкновения ядер свинца с энергией 10 ТэВ (10⋅1012 электронвольт) на каждую пару сталкивающихся нуклонов [источник не указан 818 дней]. На конец 2016 года БАК, в котором энергия столкновений протонов лишь чуть ниже проектной, уже заметно превосходит предыдущего рекордсмена — протон-антипротонный коллайдер Тэватрон, который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США). Также на порядок удалось превзойти по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Достигнутая к концу 2016 года светимость коллайдера несколько превосходит проектную светимость в 1⋅1034 /см²•с[13], что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle (KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля — от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (−271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Подземный зал, в котором смонтирован детектор ATLAS (октябрь 2004 года)

Процесс ускорения частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-ускоритель и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. При этой энергии они уже движутся со скоростью, близкой к световой. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем сгусток протонов[14] направляют в главное 26,7-километровое кольцо, доводя энергию протонов до максимальных 7 ТэВ, и в точках столкновения детекторы отмечают происходящие события. Два встречных пучка протонов при полном заполнении могут содержать 2808 сгустков каждый. Сгустки располагаются в постоянных позициях относительно друг друга, которые синхронно движутся вдоль кольца. Сгустки в определённой последовательности могут сталкиваться в ряде точек кольца, в четырёх из которых построены детекторы частиц[15].

Кинетическая энергия всех сгустков адронов в БАКе при полном его заполнении сравнима с кинетической энергией реактивного самолета, хотя масса всех частиц не превышает нанограмма и их даже нельзя увидеть невооружённым глазом. Такая энергия достигается за счёт скорости частиц, близкой к скорости света[16]. Скорость протонов с энергией 7 ТэВ всего на 3 метра в секунду меньше, чем скорость света (c).[17]

Сгустки проходят полный круг ускорителя быстрее, чем за 0,0001 сек, совершая, таким образом, свыше 10 тыс. оборотов в секунду[18].

Детекторы

Установка модуля YE+2 детектора CMS[19] (декабрь 2006 года)
Детектор ATLAS в процессе сборки (февраль 2006 года)

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb — большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf — вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детектор CMS

Детекторы ATLAS и CMS — детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE — для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb — для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM — предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf — для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц[20].

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL[21], предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего ЦЕРН на 2009 год с учётом работающего коллайдера — 1000 ГВт•ч, из которых 700 ГВт•ч придётся на долю ускорителя. Эти энергозатраты — около 10 % от общего годового энергопотребления кантона Женева. Сам ЦЕРН не производит энергию, имея лишь резервные дизельные генераторы.

Вопросы безопасности

Значительная доля внимания со стороны представителей общественности и СМИ связана с обсуждением катастроф, которые могут произойти в связи с функционированием БАК. Наиболее часто обсуждается опасность возникновения микроскопических чёрных дыр с последующей цепной реакцией захвата окружающей материи, а также угроза возникновения страпелек, гипотетически способных преобразовать в страпельки всю материю Вселенной[22].

Строительство и эксплуатация

27-километровый подземный тоннель, предназначенный для размещения ускорителя БАК

Строительство

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера[23].

Руководитель проекта — Линдон Эванс.

19 ноября 2006 года закончено строительство специальной криогенной линии для охлаждения магнитов[23].

27 ноября 2006 года в туннеле был установлен последний сверхпроводящий магнит[23].

Испытания и эксплуатация

2008 год. Запуск. Авария

К середине сентября 2008 года была успешно завершена первая часть предварительных испытаний[24]. Команде БАК удалось запустить и непрерывно удерживать циркулирующий пучок.[25] Запущенные пучки протонов успешно прошли весь периметр коллайдера по и против часовой стрелки[26]. Это позволило 10 сентября объявить об официальном запуске коллайдера.[27][28] Однако менее чем через 2 недели после этого в ходе испытаний магнитной системы 19 сентября произошла авария, в результате которой БАК вышел из строя[29]. Один из электрических контактов между сверхпроводящими магнитами расплавился под действием возникшей из-за увеличения силы тока электрической дуги, которая пробила изоляцию гелиевой системы охлаждения (криогенной системы), что привело к деформации конструкций, загрязнению внутренней поверхности вакуумной трубы частичками металла, а также выбросу около 6 тонн жидкого гелия в туннель. Эта авария заставила остановить коллайдер на ремонт, который занял остаток 2008 и бо́льшую часть 2009 года.

2009—2014 годы. Работа на пониженной энергии (Run1)

В 2009—2013 годы коллайдер работал на пониженной энергии. Сначала протон-протонные столкновения проводились на весьма скромной по меркам БАК энергии 1180 ГэВ на каждый пучок[30], что тем не менее позволило БАК побить предыдущий рекорд, принадлежавший ускорителю Тэватрон. Вскоре после этого энергия пучков была поднята до 3,5 ТэВ[31], а потом, в 2012 году, энергия пучков достигла 4 ТэВ[32]. Кроме рекорда по энергии протонов в пучках, попутно на БАК был установлен мировой рекорд пиковой светимости для адронных коллайдеров — 4,67⋅1032 см−2•сек−1; предыдущий рекорд также был установлен на Тэватроне[33]. Наиболее известным научным результатом работы коллайдера за этот период стало открытие Бозон Хиггса[34][35][36].

Этапы набора статистики в протон-протонных столкновениях чередовались с периодами столкновения тяжёлых ионов (ионов свинца)[37][38]. Также коллайдер проводил протон-ионные столкновения[39].

Практически целиком 2013—2014 годы заняла модернизация коллайдера, в ходе которой столкновения не проводились.

2015—2018 годы (Run2)

В 2015 году протоны были разогнаны до 6,5 ТэВ и начался сбор научных данных на полной энергии столкновений 13 ТэВ. С ежегодными перерывами на зиму, собирается статистика протон-протонных столкновений. Конец года принято отдать физике тяжелых ионов. Так, в ноябре и начале декабря 2016 г. около месяца проводились столкновения протонов с ядрами свинца[40], в конце 2017 года в режиме ядерных столкновений была получена информация по столкновению более лёгких ядер, по отношению к ядрам свинца, которые сталкивались в предыдущие годы, по плану в конце 2018 года тоже должны сталкиваться ядра свинца[источник не указан 416 дней].

Планы развития

До 2018 года БАК будет набирать статистику на энергии 13—14 ТэВ, план набора интегральной светимости 150 фб−1. Далее следует остановка на 2 года для модернизации каскада предварительных ускорителей с целью повышения доступной интенсивности пучков, в первую очередь SPS, а также проведение первой фазы апгрейда детекторов, что позволит повысить светимость коллайдера вдвое. С начала 2021 года до конца 2023 года следует набор статистики на энергии 14 ТэВ объёмом 300 фб−1, после чего планируется остановка на 2,5 года для значительной модернизации как ускорителя, так и детекторов (проект HL-LHC — High Luminocity LHC[41][42]). Предполагается повысить светимость ещё в 5—7 раз, за счёт увеличения интенсивности пучков и значительного усиления фокусировки в месте встречи. После запуска HL-LHC в 2026 году набор светимости продлится в течение нескольких лет, заявленная цель — 3000 фб−1.

Также обсуждается возможность проведения столкновений протонов и электронов (проект LHeC)[43]. Для этого потребуется пристроить линию ускорения электронов. Обсуждаются два варианта: пристройка линейного ускорителя электронов и размещение кольцевого ускорителя в том же тоннеле, что и LHC. Ближайшим из реализованных аналогов LHeC является немецкий электрон-протонный коллайдер HERA. Отмечается, что в отличие от протон-протонных столкновений, рассеяние электрона на протоне — это очень «чистый» процесс, позволяющий изучать партонную структуру протона намного внимательнее и аккуратнее.

Считается что с учётом всех модернизаций LHC проработает до 2034 года, но уже в 2014 году в ЦЕРНе было принято решение проработать варианты дальнейшего развития в области физики высоких энергий. Начато изучение возможности строительства коллайдера периметром до 100 км[44][45]. Проект получил название FCC (Future Circular Collider), он объединяет последовательное создание электрон-позитронной машины (FCC-ee) с энергией 45—175 ГэВ в пучке для изучения Z-, W-, Хиггс-бозонов и t-кварка, а затем, в том же тоннеле, адронного коллайдера (FCC-hh) на энергию до 100 ТэВ[46].

Распределённые вычисления

Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID), использующая технологию грид. Для определённых вычислительных задач (расчет и корректировка параметров магнитов путём моделирования движения протонов в магнитном поле) задействован проект распределённых вычислений LHC@home. Также рассматривалась возможность использования проекта LHC@home для обработки полученных экспериментальных данных, однако основные сложности связаны с большим объёмом информации, необходимым для передачи на удаленные компьютеры (сотни гигабайт). В рамках проекта распределенных вычислений LHC@Home 2.0 (Test4Theory) производится моделирование столкновений пучков протонов с целью сопоставления полученных модельных и экспериментальных данных.

Научные результаты

Благодаря большей энергии по сравнению с предшествовавшими коллайдерами, БАК позволил «заглянуть» в недоступную ранее область энергий и получить научные результаты, накладывающие ограничения на ряд теоретических моделей.

Краткий перечень научных результатов, полученных на коллайдере[47]:

  • открыт Бозон Хиггса, его масса определена как 125,09 ± 0,21 ГэВ[35][36][34];
  • при энергиях до 8 ТэВ изучены основные статистические характеристики протонных столкновений — количество рождённых адронов, их распределение по быстроте, бозе-эйнштейновские корреляции мезонов, дальние угловые корреляции, вероятность остановки протона;
  • показано отсутствие асимметрии протонов и антипротонов[48];
  • обнаружены необычные корреляции протонов, вылетающих в существенно разных направлениях[49];
  • получены ограничения на возможные контактные взаимодействия кварков[50];
  • получены более веские, по сравнению с предыдущими экспериментами[51], признаки возникновения кварк-глюонной плазмы в ядерных столкновениях[52];
  • исследованы события рождения адронных струй;
  • подтверждено существование топ-кварка, ранее наблюдавшегося только на Тэватроне;
  • обнаружено два новых канала распада Bs-мезонов[53][54], получены оценки вероятностей сверхредких распадов B- и Bs-мезонов на мюон-антимюонные пары[55][56];
  • открыты новые, теоретически предсказанные частицы [57], [58], и [59];
  • получены первые данные протон-ионных столкновений на рекордной энергии[39], обнаружены угловые корреляции, ранее наблюдавшиеся в протон-протонных столкновениях[60][61];
  • объявлено о наблюдении частицы Y(4140), ранее наблюдавшейся лишь на Тэватроне в 2009 г[62].

Также, были предприняты попытки обнаружить следующие гипотетические объекты[63]:

Несмотря на безуспешный итог поиска указанных объектов, были получены более строгие ограничения на минимально возможную массу каждого из них. По мере накопления статистики, ограничения на минимальную массу перечисленных объектов становятся жестче.

Прочие результаты
  • Результаты работы эксперимента LHCf, работавшего в первые недели после запуска БАК, показали, что энергетическое распределение фотонов в области от нуля до 3,5 ТэВ плохо описывается программами, моделирующими данный процесс, приводя к расхождениям между реальными и модельными данными в 2—3 раза (для самой высокой энергии фотонов, от 3 до 3,5 ТэВ, все модели дают предсказания, почти на порядок превышающие реальные данные)[69].
  • 15 ноября 2012 коллаборацией CMS было объявлено о наблюдении частицы Y(4140) с массой 4148,2 ± 2,0 (стат) ± 4,6 (сист) МэВ/c² (статистическая значимость более 5σ), ранее наблюдавшейся лишь на Тэватроне в 2009 г. Наблюдения сделаны в ходе обработки статистики 5,2 фб−1 столкновений протонов на энергии 7 ТэВ. Наблюдаемый распад данной частицы на J/ψ-мезон и Фи-мезон не описывается в рамках Стандартной модели[62][70].
  • 14 июля 2015 года коллаборацией LHCb было объявлено об открытии класса частиц, известного как пентакварки.[71][72]

Финансирование проекта

В 2001 году ожидалось, что общая стоимость проекта составит около 4,6 млрд швейцарских франков (3 млрд евро) за сам ускоритель (без детекторов) и 1,1 млрд швейцарских франков (700 млн евро) составит доля ЦЕРН в проведении экспериментов (то есть в строительстве и обслуживании детекторов)[73].

Строительство БАК было одобрено в 1995 году с бюджетом 2,6 млрд швейцарских франков (1,6 млрд евро) и дополнительными 210 млн швейцарских франков (140 млн евро) на эксперименты (то есть детекторы, сбор и обработку данных). В 2001 году эти расходы были увеличены на 480 млн франков (300 млн евро) в части ускорителя и 50 млн франков (30 млн евро) в части экспериментов (расходы, относящиеся непосредственно к ЦЕРН), что вследствие сокращения бюджета ЦЕРН привело к сдвигу планируемых сроков введения с 2005 года на апрель 2007 года[74].

Бюджет проекта по состоянию на ноябрь 2009 года составил 6 млрд долл. для строительства установки, которое продолжалось семь лет. Ускоритель частиц создавался под руководством ЦЕРН. В проекте было задействовано примерно 700[75] специалистов из России, которые участвовали в разработке детекторов БАК[76]. Общая стоимость заказов, которые получили российские предприятия, по некоторым оценкам достигала 120 млн долл[77].

Официальная стоимость проекта БАК не включает стоимость ранее существовавших в ЦЕРН инфраструктуры и наработок. Так, основное оборудование БАК смонтировано в тоннеле ранее существовавшего коллайдера LEP, при этом использовалось многокилометровое кольцо SPS в качестве предварительного ускорителя. Если бы БАК пришлось строить с нуля, его стоимость оказалась бы заметно выше.[источник не указан 1022 дня]

Отражение в искусстве

  • В книге фантаста Макса Острогина «Большая Красная Кнопка» рассказывается о наступлении апокалипсиса после включения на полную мощность Коллайдера
  • В ЦЕРН есть филк-группа Les Horribles Cernettes, аббревиатура которой совпадает с аббревиатурой БАК (LHC). Первая песня этого коллектива «Collider» была посвящена парню, который забыл о своей девушке, будучи увлечён созданием коллайдера[78].
  • В четвёртом сезоне научно-фантастического телесериала «Лексс» главные герои оказываются на Земле. Обнаруживается, что Земля относится к планетам «типа 13» на последней стадии развития. Планеты типа 13 всегда уничтожают себя сами, в результате войн или неудачного опыта по определению массы бозона Хиггса на сверхмощном ускорителе элементарных частиц.
  • В шестой серии тринадцатого сезона мультсериала «Южный парк» с помощью магнита из Большого адронного коллайдера была достигнута сверхсветовая скорость на конкурсе Дерби соснового леса (Pinewood Derby).
  • В книге Дена Брауна «Ангелы и демоны» антивещество из Большого адронного коллайдера было украдено, и похитители хотели взорвать с помощью него Ватикан.
  • В фильме «Конец света» (производство Би-би-си) последним из четырёх наиболее вероятных сценариев апокалипсиса являлся взрыв при запуске новейшего ускорителя элементарных частиц, повлёкший за собой образование чёрной дыры. Но приглашённые эксперты утверждают, что вероятность катастрофы раздута «жёлтой прессой», в то время как вероятность образования цунами, падения астероида или смертельной эпидемии гораздо выше.
  • В 13 серии 1 сезона научно-фантастического сериала «Одиссея 5» главные герои попадают в ЦЕРН, где местные учёные и сотрудники уверяют, что БАК полностью безопасен, основываясь на предварительных расчётах. Однако, как выяснилось позже, одна из форм киберразума взломала и проникла в главный компьютер ЦЕРН и подделала общие расчёты. Выяснив это, основываясь на новых верных расчетах, учёные выясняют, что появляется большая вероятность появления страпелек в коллайдере, что неизбежно приведёт к концу света.
  • В испанском телесериале «Ковчег» и его российском варианте «Корабль» из-за взрыва БАКа все континенты ушли под воду.
  • В визуальной новелле, аниме и манге «Steins;Gate» несколько раз упоминался БАК; также упоминался ЦЕРН как разработчик машины времени.
  • В мультсериале «Футурама» профессор Фарнсворт покупает коллайдер в «ПИкее». Через некоторое время он заявляет: «Суперколлайдер супервзорвался».
  • В книге Джо Холдемана «Бесконечный мир» описывается в том числе процесс создания гигантского ускорителя, запуск которого должен привести к большому взрыву, который породит новую вселенную, уничтожив при этом существующую.
  • В компьютерной игре «Эврика!» одной из целей является возвращение БАКа на Землю.[источник не указан 1022 дня]
  • В 2009 году Николай Полисский вместе с Никола-Ленивецкими промыслами сделал в центральном пространстве Музея современного искусства Люксембурга MUDAM инсталляцию из дерева и лозы, названную им «Большой адронный коллайдер»[79].
  • Адронный коллайдер можно построить в игре «Rise of Nations».
  • БАК упоминался в первой серии пятого сезона сериала Во все тяжкие.
  • В телесериале «Теория Большого взрыва» главные герои-физики часто упоминают БАК как место, где они очень хотели бы побывать. Причем нескольким всё-таки удалось побывать в Швейцарии и увидеть его.
  • В градостроительном симуляторе Cities: Skylines адронный коллайдер появляется в качестве монумента.
  • В видеоклипе на песню Redshift британской группы Enter Shikari БАК является создателем чёрной дыры.
  • четырнадцатый студийный альбом американской метал группы Megadeth носит название Super Collider, также БАК изображен на обложке альбома
Научно-популярные фильмы
  • «BBC: Машина Большого Взрыва» (англ. The Big Bang Machine) — научно-популярный фильм, Би-би-си, 2008 год.
  • «Большой адронный коллайдер. Братство кольца» — научно-популярный фильм, 5 канал, 2010 год.
  • «BBC. Horizon: Охота за бозоном Хиггса — спецвыпуск» / (англ. The Hunt for the Higgs — A Horizon Special) — научно-популярный фильм, 2012 год.
  • «Наука 2.0. Точка взаимодействия. ЦЕРН» — научно-популярный фильм, ВГТРК, 2012 год.
  • «Страсти по частицам / Particle Fever» — документальный фильм, 2013 год.
  • «Наука 2.0. За гранью. Коллайдер» — документальный фильм, 2017 год.
  • «The Flash/Флэш» — сериал DC Comics, США / 2014—2018.[80]

См. также

Примечания

  1. Roger Highfield. Large Hadron Collider: Thirteen ways to change the world. Telegraph (16 сентября 2008). Проверено 13 января 2016.
  2. The ultimate guide to the LHC (англ.) P. 30.
  3. LHC: ключевые факты. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  4. Google Street View позволяет виртуально погулять по Большому адронному коллайдеру. Элементы.ру (27 сентября 2013). Проверено 30 сентября 2013.
  5. The ultimate guide to the LHC (англ.) P. 22—25.
  6. Задачи, стоящие перед LHC. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  7. Загадки Большого адронного коллайдера: январь 2016. Элементы.ру.
  8. За пределами Стандартной модели.
  9. Tevatron Electroweak Working Group, Top Subgroup.
  10. Хиггсовский механизм нарушения электрослабой симметрии. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  11. Многоликий протон. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  12. Ученые планируют провести поиск параллельных Вселенных, существующих в дополнительных измерениях, при помощи Большого Адронного Коллайдера.
  13. Новости Большого адронного коллайдера. elementy.ru. Проверено 20 ноября 2016.
  14. Протонный пучок не является однородным непрерывным «лучом». Он разбит на отдельные сгустки протонов, которые летят друг за другом на строго определённом расстоянии. Каждый сгусток — это тончайшая «протонная иголка» длиной несколько десятков сантиметров и толщиной в доли миллиметра. В максимуме производительности БАКа каждый из двух встречных пучков будет состоять из 2808 сгустков, идущих друг за другом на расстоянии в несколько метров, а в каждом сгустке будет примерно по 100 миллиардов протонов. Подробнее см. Протонные пучки в LHC Элементы.ру
  15. Протонные пучки в LHC. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  16. Удивительный мир внутри атомного ядра. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  17. LHC: How Fast do These Protons Go?. yogiblog. Проверено 29 октября 2008.
  18. Устройство LHC. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  19. News From Point 5. CMS Times (18 декабря 2006). Проверено 13 января 2016.
  20. CERN / Experiments. ЦЕРН. Проверено 13 января 2016.
  21. На LHC будет вестись эксперимент по поиску монополей. Элементы.ру (21 марта 2010). Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  22. The Potential for Danger in Particle Collider Experiments (англ.)
  23. 1 2 3 LHC: хронология создания и работы.
  24. LHC synchronization test successful (англ.)
  25. На LHC запущен стабильно циркулирующий пучок. Элементы.ру (12 сентября 2008). Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  26. Mission complete for LHC team. IOP Physics World. Проверено 12 сентября 2008. Архивировано 24 августа 2011 года.
  27. LHC milestone day gets off to fast start. IOP Physics World. Проверено 12 сентября 2008. Архивировано 24 августа 2011 года.
  28. First beam in the LHC — accelerating science. ЦЕРН. Проверено 13 января 2016.
  29. Происшествие на Большом адронном коллайдере задерживает эксперименты на неопределённый срок. Элементы.ру (19 сентября 2008). Проверено 7 января 2011. Архивировано 23 августа 2011 года.
  30. Пучки протонов в БАК разогнали до рекордной энергии. Lenta.ru (30 ноября 2009). Проверено 13 августа 2010. Архивировано 24 августа 2011 года.
  31. Столкновения протонов на рекордной энергии 7 ТэВ произошли в БАК. РИА Новости (30 марта 2010). Проверено 13 августа 2010. Архивировано 24 августа 2011 года.
  32. Элементы - новости науки: Протоны впервые разогнаны до 4 ТэВ.
  33. БАК установил рекорд по светимости пучков. Lenta.ru (22 апреля 2011). Проверено 21 июня 2011. Архивировано 24 августа 2011 года.
  34. 1 2 Элементы - новости науки: В ЦЕРНе объявлено об открытии хиггсовского бозона.
  35. 1 2 CERN experiments observe particle consistent with long-sought Higgs boson.
  36. 1 2 Изучение бозона Хиггса.
  37. Заканчивается работа с протонными пучками в 2010 году. Элементы.ру (1 ноября 2011). Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  38. The LHC enters a new phase ЦЕРН, 4 ноября 2010
  39. 1 2 Элементы - новости науки: Коллаборация ALICE представила первые данные по протон-ядерным столкновениям (недоступная ссылка). Архивировано 29 октября 2012 года.
  40. Новости Большого адронного коллайдера: На LHC прошел сеанс протон-ядерных столкновений
  41. A luminous future for the LHC, CERN Courier, Feb 23, 2015.
  42. Элементы - новости науки: Десятилетний проект по созданию новых магнитов для LHC завершился успехом.
  43. Будущий электрон-протонный коллайдер на базе LHC. Элементы.ру (27 августа 2008). Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  44. Физики ЦЕРНа обдумывают план нового гигантского коллайдера. Mail.Ru (6 февраля 2014). Проверено 7 февраля 2014. Архивировано 7 февраля 2014 года.
  45. The Future Circular Collider study, CERN Courier, Mar 28, 2014.
  46. Future Circular Collider Study
  47. Результаты работы LHC в 2010 году. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  48. Результаты ALICE по асимметрии протонов и антипротонов ставят точку в давнем споре. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  49. Детектор CMS обнаружил необычные корреляции частиц. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  50. Детектор СMS улучшил ограничение ATLAS на существование контактных взаимодействий. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  51. Подобные исследования проводились и ранее на коллайдере RHIC, и иногда в столкновениях на RHIC удавалось получить косвенные признаки возникновения кварк-глюонной плазмы, но результаты экспериментов БАК выглядят заметно более убедительно.
  52. Детектор ATLAS зарегистрировал дисбаланс струй в ядерных столкновениях. Элементы.ру. Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  53. LHCb Collaboration. First observation of B0s → J/ψ f0(980) decays // Physics Letters B. — 2011. Т. 698, № 2. С. 115—122. DOI:10.1016/j.physletb.2011.03.006. arXiv:1102.0206.
  54. LHCb Collaboration. First observation of Bs → D_{s2}^{*+} X μ ν decays // Physics Letters B. — 2011. Т. 698, № 1. С. 14—20. DOI:10.1016/j.physletb.2011.02.039. arXiv:1102.0348.
  55. Элементы - новости науки: Детектор LHCb видит важнейший сверхредкий распад Bs-мезонов (недоступная ссылка). Архивировано 2 февраля 2013 года.
  56. First Evidence for the Decay $B^0_s \to \mu^+\mu^-$. CERN Document Server.
  57. G. Aad et al. (ATLAS Collaboration). Observation of a New χb State in Radiative Transitions to Υ(1S) and Υ(2S) at ATLAS // Phys. Rev. Lett.. — 2012. — Vol. 108 (9 апреля). — P. 152001. arXiv:1112.5154. DOI:10.1103/PhysRevLett.108.152001.
  58. S. Chatrchyan et al. (CMS Collaboration). Observation of a New Ξb Baryon // Phys. Rev. Lett.. — 2012. — Vol. 108 (21 июня). — P. 252002. arXiv:1204.5955. DOI:10.1103/PhysRevLett.108.252002.
  59. R. Aaij et al. (LHCb Collaboration). Observation of Excited Baryons // Phys. Rev. Lett.. — Vol. 109. — P. 172003. arXiv:1205.3452. DOI:10.1103/PhysRevLett.109.172003.
  60. Элементы - новости науки: Коллаборация CMS видит корреляции в протон-ядерных столкновениях.
  61. S. Chatrchyan et al (CMS Collaboration). Observation of long-range, near-side angular correlations in pPb collisions at the LHC // Physics Letters B. — 2013. — Vol. 718, no. 3 (8 января). — P. 795–814. arXiv:1210.5482v2. DOI:10.1016/j.physletb.2012.11.025.
  62. 1 2 New particle-like structure confirmed at the LHC. symmetry magazine.
  63. Поиск экзотических частиц: результаты.
  64. Микроскопических чёрных дыр на LHC не видно. Элементы.ру (16 декабря 2010). Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  65. Детектор ATLAS искал, но не нашёл возбуждённые кварки. Элементы.ру (19 августа 2010). Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  66. Коллаборация CMS обнародовала первые результаты по поиску суперсимметрии. Элементы.ру (19 декабря 2010). Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  67. Поиск лептокварков дал отрицательный результат. Элементы.ру (26 декабря 2010). Проверено 28 декабря 2010. Архивировано 24 августа 2011 года.
  68. Элементы - новости науки: Гипотетических W'- и Z'-бозонов по-прежнему не видно.
  69. Опубликованы первые результаты эксперимента LHCf. Элементы.ру. Проверено 2 мая 2011. Архивировано 24 августа 2011 года.
  70. PhysicsResultsBPH11026 < CMSPublic < TWiki Observation of structures in J/psi phi spectrum in exclusive B+ → J/psi phi K+ decays at 7 TeV: BPH-11-026.
  71. CERN’s LHCb experiment reports observation of exotic pentaquark particles.
  72. Rincon, Paul. Large Hadron Collider discovers new pentaquark particle, BBC News (1 July 2015). Проверено 14 июля 2015.
  73. CERN Ask an Expert service / How much does it cost?. ЦЕРН. Архивировано 24 августа 2011 года.
  74. Luciano Maiani. LHC Cost Review to Completion. ЦЕРН (16 октября 2001). Архивировано 24 августа 2011 года.
  75. Большой адронный коллайдер создавали более 700 российских физиков. РИА Новости.
  76. «Ящик Пандоры» открывается. Вести.ру (9 сентября 2008). Проверено 12 сентября 2008. Архивировано 24 августа 2011 года.
  77. Ученые готовятся перезапустить БАК. Business FM (20 ноября 2009). Архивировано 24 августа 2011 года.
  78. Collider - Les Horribles Cernettes.
  79. Попова Юлия. Адронный коллайдер из Николы-Ленивца // Эксперт. — 2009. — № 17—18 (656). — 11 мая.
  80. ������ ���� / The Flash (2014-2018) - ��� ���������� � �������. www.kinonews.ru. Проверено 10 декабря 2018.

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии