WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Антивещество́ — вещество, состоящее из античастиц, реально стабильно не образующееся в природе (никакие наблюдательные данные не свидетельствуют об обнаружении антивещества в нашей Галактике и за её пределами[1]).

При взаимодействии вещества и антивещества происходит их аннигиляция, при этом образуются высокоэнергичные фотоны или пары частиц-античастиц. Ведётся довольно много рассуждений на тему того, почему наблюдаемая часть Вселенной состоит почти исключительно из вещества, и существуют ли другие места, заполненные, наоборот, практически полностью антивеществом; но на сегодняшний день наблюдаемая асимметрия вещества и антивещества во Вселенной — одна из самых больших нерешённых задач физики (см. Барионная асимметрия Вселенной). Предполагается, что столь сильная асимметрия возникла в первые доли секунды после Большого Взрыва.

Получение

Первым объектом, целиком составленным из античастиц, был синтезированный в 1965 году анти-дейтрон (ядро тяжёлого изотопа водорода). В 1970—1974 гг. на серпуховском ускорителе были получены и более тяжёлые антиядра — трития (изотоп водорода), гелия[2]. В 1995 году в ЦЕРНе был синтезирован атом антиводорода, состоящий из позитрона и антипротона. В последние годы антиводород был получен в значительных количествах и было начато детальное изучение его свойств.

В 2010 году физикам впервые удалось кратковременно поймать в «ловушку» атомы антивещества. Для этого учёные охлаждали облако, содержащее около 30 тысяч антипротонов, до температуры 200 кельвинов (минус 73,15 градуса Цельсия), и облако из 2 миллионов позитронов до температуры 40 кельвинов (минус 233,15 градуса Цельсия). Физики охлаждали антивещество в ловушке Пеннинга, встроенной внутрь ловушки Иоффе — Питчарда. В общей сложности было поймано 38 атомов, которые удерживались 172 миллисекунды[3].

В мае 2011 года результаты предыдущего эксперимента удалось значительно улучшить — на этот раз было поймано 309 антипротонов, которые удерживались 1000 секунд. Дальнейшие эксперименты по удержанию антивещества призваны показать наличие или отсутствие для антивещества эффекта антигравитации[4].

Стоимость

Антивещество известно как самая дорогая субстанция на Земле — по оценкам НАСА 2006 года, производство миллиграмма позитронов стоило примерно 25 миллионов долларов США[5]. По оценке 1999 года, один грамм антиводорода стоил бы 62,5 триллиона долларов[6]. По оценке CERN 2001 года, производство миллиардной доли грамма антивещества (объём, использованный CERN в столкновениях частиц и античастиц в течение десяти лет) стоило несколько сотен миллионов швейцарских франков[7].

Свойства

По современным представлениям, силы, определяющие структуру материи (сильное взаимодействие, образующее ядра, и электромагнитное взаимодействие, образующее атомы и молекулы), совершенно одинаковы (симметричны) как для частиц, так и для античастиц. Это означает, что структура антивещества должна быть идентична структуре обычного вещества.

Свойства антивещества полностью совпадают со свойствами обычного вещества, рассматриваемого через зеркало (зеркальность возникает вследствие несохранения чётности в слабых взаимодействиях)[8].

При взаимодействии вещества и антивещества происходит их аннигиляция, при этом образуются высокоэнергичные фотоны или пары частиц-античастиц (порядка 50 % энергии при аннигиляции пары нуклон-антинуклон выделяется в форме нейтрино[источник не указан 1934 дня], которые практически не взаимодействуют с веществом). При взаимодействии 1 кг антивещества и 1 кг вещества выделится приблизительно 1,8⋅1017 джоулей энергии, что эквивалентно энергии, выделяемой при взрыве 42,96 мегатонн тротила. Самое мощное ядерное устройство из когда-либо взрывавшихся на планете, «Царь-бомба»: масса 26,5 т, при взрыве высвободило энергию, эквивалентную ~57—58,6 мегатоннам. Теллеровский предел для термоядерного оружия подразумевает, что самый эффективный выход энергии не превысит 6 кт/кг массы устройства.

В 2013 году эксперименты проводились на опытной установке, построенной на базе вакуумной ловушки ALPHA. Учёные провели измерения движения молекул антиматерии под действием гравитационного поля Земли. И хотя результаты оказались неточными, а измерения имеют низкую статистическую значимость, физики удовлетворены первыми опытами по прямому измерению гравитации антиматерии.

В ноябре 2015 года группа российских и зарубежных физиков на американском коллайдере RHIC экспериментально доказала идентичность структуры вещества и антивещества путём точного измерения сил взаимодействия между антипротонами, оказавшимися в этом плане неотличимыми от обычных протонов[9].

В 2016 году учёным коллаборации ALPHA впервые удалось измерить оптический спектр атома антиматерии, отличий в спектре антиводорода от спектра водорода не обнаружено[10][11].

Отличие вещества и антивещества возможно выявить только за счёт слабого взаимодействия, однако при обычных температурах слабые эффекты слишком малы.[источник не указан 1109 дней]

Проводятся эксперименты по обнаружению антивещества во Вселенной[12].

См. также

Примечания

  1. Власов, 1966, с. 153.
  2. Б. С. Ишханов, Кэбин Э. И.Физика ядра и частиц, XX век — гл. «Античастицы» // Ядерная физика в Интернете
  3. «Физики впервые поймали в ловушку атомы антивещества.»: Лента.Ру, 18.11.2010, 12:45:23.
  4. «Antihydrogen Trapped For 1000 Seconds»: The Physics arXiv Blog, 02.05.2011
  5. New and Improved Antimatter Spaceship for Mars Missions. NASA (2006). Проверено 28 сентября 2009. Архивировано 22 августа 2011 года.
  6. Reaching for the stars: Scientists examine using antimatter and fusion to propel future spacecraft. NASA (12 april 1999). Проверено 21 августа 2008. Архивировано 22 августа 2011 года.
  7. Questions & Answers. CERN (2001). Проверено 24 мая 2008. Архивировано 22 августа 2011 года.
  8. Широков, 1972, с. 345.
  9. Физики впервые измерили силу взаимодействия частиц антиматерии
  10. Специалисты ЦЕРН впервые измерили оптический спектр антиматерии // РИА, 19.12.2016
  11. Учёные впервые получили спектр антиматерии // 20.12.2016
  12. Зураб Силагадзе Увидеть антизвезду // Наука и жизнь. — 2017. — № 5.

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии