WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
БН-600

Белоярская АЭС (на ней впервые в мире появился энергоблок промышленного масштаба на быстрых нейтронах)
Тип реактора На быстрых нейтронах
Назначение реактора

Электроэнергетика

Топливо = 235U, MOX
Технические параметры
Теплоноситель Натрий
Тепловая мощность 1470 МВт
Электрическая мощность 600 МВт
Разработка
Научная часть ФГУП ГНЦ РФ ФЭИ
Предприятие-разработчик ОАО СПбАЭП
Конструктор ОКБМ им. Африкантова
Новизна проекта Первый энергетический реактор на быстрых нейтронах
Строительство и эксплуатация
Пуск Апрель 1980
Эксплуатация С 1980
Построено реакторов 1

БН-600 — энергетический реактор на быстрых нейтронах с натриевым теплоносителем, пущенный в эксплуатацию в апреле 1980 года в 3-м энергоблоке на Белоярской АЭС в Свердловской области близ города Заречный. Электрическая мощность — 600 МВт. С момента остановки реактора «Феникс» во Франции в 2009 году до середины 2014 года (запуска БН-800)[1] БН-600 был единственным в мире действующим энергетическим реактором на быстрых нейтронах.

В конце декабря 1979 года в реактор БН-600 поместили пусковой источник нейтронов и начали загружать сборки с ядерным топливом. 26 февраля 1980 года была набрана необходимая критическая масса топлива, и в реакторе БН-600 впервые в его «жизни» началась цепная ядерная реакция. 26 февраля 1980 года, в 18 час. 26 мин. состоялся физический пуск уникального реактора на быстрых нейтронах БН-600. Следующим этапом стал энергетический пуск — 8 апреля 1980 года энергоблок с реактором БН-600 выдал первые киловатт-часы в Свердловскую энергосистему.

В 2015 году на реакторе проводятся испытания уран-плутониевого топлива[2].

Особенности реакторов на быстрых нейтронах

Главная особенность ядерных реакторов на быстрых нейтронах состоит в том, что они открывают возможность использования не делящихся в реакторах на тепловых нейтронах изотопов тяжёлых элементов. В топливный цикл могут быть вовлечены запасы 238U и 232Th, которых в природе значительно больше, чем 235U — основного топлива для реакторов на тепловых нейтронах. В том числе может быть использован и так называемый «отвальный уран», оставшийся после обогащения ядерного топлива 235U.

Реакторы на быстрых нейтронах дают реальную возможность расширенного воспроизводства ядерного топлива. Это значит, что, например, на 100 разделившихся ядер топлива в реакторах на быстрых нейтронах образуется примерно 120—140 новых ядер, способных к делению.

Активные зоны (АЗ) реакторов на быстрых нейтронах (БН) весьма существенно отличаются от активных зон реакторов на тепловых нейтронах.

Экономически необходимая средняя глубина выгорания уран-плутониевого топлива в БН должна составлять 100—150 МВт·сут/кг, т. е. она должна быть в 2,5—3 раза выше, чем в реакторах на тепловых нейтронах, что обусловлено высокой стоимостью топлива БН. Для достижения указанной глубины выгорания требуется высокая радиационная стойкость ТВЭЛ и ТВС БН, необходимая стабильность геометрических параметров, сохранение герметичности и пластичности оболочек ТВЭЛ, их совместимость с продуктами деления и устойчивость к коррозионному воздействию теплоносителя и т. п. Активная зона БН окружена в радиальном и осевом направлениях зонами воспроизводства (экранами), заполненными воспроизводящим материалом — обеднённым ураном, содержащим 99,7—99,8 % 238U.

Главная же особенность использования уран-плутониевого топлива в БН состоит в том, что в его активной зоне процесс деления ядер быстрыми нейтронами сопровождается бо́льшим выходом (на 20—27 %) вторичных нейтронов, чем в реакторах на тепловых нейтронах. Это создает основную предпосылку для получения высокого значения коэффициента воспроизводства и обеспечивает расширенное воспроизводство ядерного топлива в реакторах-размножителях.

Использование натрия в качестве теплоносителя требует решения следующих задач:

  • чистота натрия, используемого в БН. Необходимо достичь 99,95 %, то есть не более 5⋅10−4 примесей. Большие проблемы вызывают примеси кислорода из-за участия кислорода в массопереносе железа и коррозии компонентов;
  • натрий является очень активным химическим элементом. Он горит в воздухе и других окисляющих агентах. Горящий натрий образует дым, который может вызвать повреждение оборудования и приборов. Проблема усложняется в случае, если дым натрия радиоактивен. Горячий натрий в контакте с бетоном может реагировать с компонентами бетона и выделять водород, который в свою очередь взрывоопасен. Для устранения опасности натрий и продукты его сгорания следует тщательно контролировать;
  • возможность реакций натрия с водой и органическими материалами. Особенно это важно для конструкции парогенератора, так как утечка из водяного контура в натриевый приводит к быстрому росту давления.

Стабильность быстрых реакторов зависит от параметров, перечисленных ниже:

  • пустотного натриевого коэффициента.
  • Изменение в реактивности происходит при изменении плотности натриевого теплоносителя (или полного оголения АЗ). Натриевый пустотный коэффициент может быть положительным или отрицательным, зависит от размеров АЗ, геометрии и состава материалов;
  • механических расширений ТВЭЛ.
  • При увеличении уровня мощности реактора происходит тепловое расширение топливных сборок. Это эффективно увеличивает размеры АЗ, тем самым уменьшается её реактивность;
  • радиоактивность первого контура.

Радиоактивные изотопы 24Na, 22Na являются продуктами активации, возникающими вследствие нейтронного облучения натрия первого контура. Периоды полураспада 24Na и 22Na составляют соответственно 15 ч и 2,6 года. Как результат, радиоактивность натрия первого контура остается высокой в течение значительного времени после остановки реактора. Касаясь только 24Na, отметим, что требуется более четырёх суток после остановки реактора, прежде чем персонал сможет находиться вблизи больших количеств натриевого теплоносителя.

Переход к серийному сооружению АЭС с БН осложнён многими не отработанными в промышленном масштабе технологическими процессами и нерешёнными вопросами оптимальной организации их ядерного топливного цикла (ЯТЦ), который должен базироваться на плутонии, и может быть только замкнутым с очень коротким (до 1 года) временем внешнего цикла (химическая переработка отработавшего топлива и дистанционно управляемое изготовление свежего топлива).

Удельные капиталовложения в АЭС с БН в настоящее время значительно (1,5—2 раза) превышают удельные капиталовложения в АЭС с реакторами на тепловых нейтронах. Сдерживающее влияние на развитие БН оказывает также пока благополучное положение в мире с ресурсами относительно дешевого урана.

Конструкция реакторной установки БН-600

Макет реактора БН-600 Белоярской АЭС с вырезанными секторами для удобства обзора.

Компоновка реакторной установки интегральная (бакового типа): активная зона, насосы, промежуточные теплообменники и биологическая защита размещены в корпусе реактора. Теплоноситель первого контура движется внутри корпуса реактора по трем параллельным петлям, каждая из которых включает два теплообменника и циркуляционный центробежный насос погружного типа с двухсторонним всасыванием. Насосы снабжены обратными клапанами. Циркуляция натрия в каждой петле промежуточного контура осуществляется центробежным насосом погружного типа с односторонним всасыванием. Активная зона и зона воспроизводства смонтированы в напорной камере, где расход теплоносителя распределяется по топливным сборкам соответственно их тепловыделению. Активная зона по торцам и периметру окружена экранами — зоной воспроизводства, состоящей из сборок, заполненных диоксидом обеднённого урана.

Корпус реактора представляет собой бак цилиндрической формы с эллиптическим днищем и конической верхней частью. Корпус через опорное кольцо установлен на катковые опоры фундамента. Внутри корпуса помещена металлоконструкция коробчатого типа — опорный пояс, на котором укреплена напорная камера с активной зоной, зоной воспроизводства и хранилищем, а также внутрикорпусная биологическая защита.

Три насоса первого контура и шесть промежуточных теплообменников смонтированы в цилиндрических стаканах, установленных на опорном поясе. В верхней части корпус имеет соответственно шесть отверстий для установки теплообменников и три отверстия — для насосов. Компенсация разности температурных перемещений между стаканами теплообменников и насосов, а также между корпусом и страховочным кожухом обеспечивается сильфонными компенсаторами. Стенки бака имеют принудительное охлаждение «холодным» натрием из напорной камеры. Биологическая защита состоит из цилиндрических стальных экранов, стальных болванок и труб с графитовым заполнителем. Бак реактора заключён в страховочный кожух. Верхняя часть корпуса служит опорой для поворотной пробки и поворотной колонны, обеспечивающих наведение механизма перегрузки на топливную сборку. Одновременно поворотная пробка и поворотная колонна служит биологической защитой.

Парогенератор на БН-600 необычный: он состоит из 24 секций (по 8 на каждую петлю). Каждая секция включает в себя 3 вертикальных модуля-теплообменника. Итого на весь энергоблок – 72 модуля. Данное решение выбрано в силу уникальности энергоблока. Конструкторы не знали, насколько долговечно будет работать парогенератор, в котором раскалённый натрий превращает воду в пар. Поэтому предусмотрели возможность отключить для ремонта несколько модулей или даже секций, не снижая при этом мощность энергоблока. Опыт эксплуатации показал, что эта предосторожность была излишней.[3] В следующем поколении реактора каждой петле соответствует один парогенератор.

Топливные сборки загружают и выгружают комплексом механизмов, куда входят: два механизма перегрузки, установленные на поворотной колонне; два элеватора (загрузки и выгрузки); механизм передачи поворотного типа, размещенный в герметичном боксе.

Паротурбинная часть выполнена из трёх серийных турбин обычной теплоэнергетики мощностью по 200 МВт каждая, с начальными параметрами пара 13,0 МПа и 500 °C и промежуточным перегревом пара.

Продление ресурса

8 апреля 2010 года исполнилось 30 лет работы энергоблока БН-600. Действующий энергоблок Белоярской атомной станции БН-600 был остановлен 28 марта 2010 года. Как сообщает пресс-служба атомной электростанции – это плановое мероприятие, необходимое для проведения перегрузки топлива, инспекции и модернизации оборудования.

За 2,5 месяца на энергоблоке БН-600 были выполнены плановые регламентные работы по техобслуживанию и ремонту оборудования и большой комплекс мероприятий по программе продления расчётного срока эксплуатации. В помощь специалистам Белоярской АЭС прибыли свыше 400 ремонтников из подрядных организаций.

В апреле-июне 2010 года на энергоблоке БН-600 были проведены: замена модулей парогенераторов и пароводяной арматуры, ремонт одного из главных циркуляционных насосов и паровой турбины, повышение сейсмостойкости энергетического оборудования, модернизация ряда технологических систем.

БАЭС в апреле 2010 года получила лицензию на продление срока эксплуатации БН-600 до 31 марта 2020 года.

11 июня 2010 г. энергоблок БН-600 Белоярской АЭС возобновил выработку электроэнергии по завершении плановой перегрузки топлива, инспекции и модернизации оборудования.

Примечания

  1. В июне 2014 года был осуществлён физический пуск быстрого реактора БН-800 на 4-м энергоблоке Белоярской АЭС. На энергоблоке БН-800 начался выход на минимальный уровень мощности — ТАСС, 27 июня 2014 г.
  2. На Белоярской АЭС тестируют экспериментальное ядерное топливо — ТАСС, 23 апреля 2015 г.
  3. Экскурсия на Белоярскую АЭС. (Часть 5) / Белоярская АЭС / Publicatom. publicatom.ru. Проверено 24 июля 2017.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии