В теории графов под ациклической раскраской понимается (правильная) раскраска вершин, в которой любой двуцветный подграф не имеет циклов. Ациклическим хроматическим числом A(G) графа G называется наименьшее число цветов, необходимое в любой ациклической раскраске G.
Ациклическая раскраска часто связывается с графами на поверхностях, не являющихся плоскостями.
A(G) ≤ 2 тогда и только тогда, когда G не имеет циклов.
Границы A(G) в терминах максимальной степени Δ(G) графа G включают следующие:
Вехой в изучении ациклической раскраски является следующий положительный ответ на гипотезу Грюнбаума:
Теорема. (Borodin 1979)
Грюнбаум (1973) ввёл ациклическую раскраску и ациклическое хроматическое число и высказал гипотезу, которая и была доказана Бородиным. На доказательство у Бородина ушло несколько лет старательной проверки 450 конфигураций. Одним из следствий этой теоремы является то, что любой планарный граф можно разложить на независимые множества и два леса. (Stein 1970, 1971)
Задача определения, выполняется ли A(G) ≤ 3, является NP-полной (Kostochka 1978). Коулман и Цай (Coleman, Cai 1986) показали, что задача остаётся NP-полной даже для двудольных графов.
Гебремедхин и др. (Gebremedhin, Tarafdar, Pothen, Walther 2008) продемонстрировали, что любая правильная вершинная раскраска хордального графа является ациклической раскраской. Поскольку для хордальных графов можно найти оптимальную раскраску за время O(n+m), то же самое верно и для ациклической раскраски на этом классе графов.
Линейный по времени алгоритм для ациклической раскраски графа максимальной степени ≤ 3 в 4 цвета или меньше представлена Скулраттанакулчаем (Skulrattanakulchai 2004). Ядав и Сатиш (Yadav, Satish 2008) описывают линейный по времени алгоритм ациклической раскраски графа с максимальной степенью ≤ 5 при использовании 8 цветов и менее, а также алгоритм раскраски графа максимальной степени ≤ 6 при использовании 12 цветов и менее.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .