Атомная теория — физическая теория, предполагающая, что всё на свете состоит из мельчайших частиц — атомов, скреплённых между собой ядерными и электрическими силами. В XX веке на практике было доказано, что атом можно разделить на ещё более мелкие — субатомные — частицы.
В древнегреческой философии, а позднее и в средние века, люди предполагали, что вещи вокруг них состоят из двух частей: неделимые атомы, каким-то образом сцепленные друг с другом, и из пустоты между атомами. Атомы считались вечными и неразрушимыми корпускулами.[1][2] Эта позиция была отражена в трудах таких философов, как Демокрит или Левкипп, но никаких доказательств этой теории в то время не было.
В конце XVIII века были открыты химические законы сохранения:
Для выполнения этих законов материя должна обладать дискретной структурой. Но в то время была не совсем ясна структура того, что сейчас мы называем «молекулой». В 1811 году Амедео Авогадро провёл серию опытов с газом и выяснил, что два литра водорода реагируют только с одним литром кислорода при получении водяного пара.[6] В результате исследования броуновского движения открытого в 1827 году [7] стало очевидно, что материя состоит из отдельных частиц — атомов, способных собираться в группы — молекулы, то есть была создана атомная теория строения вещества.
До 1897 года атомы считались неделимыми. В 1897 году Джозеф Джон Томсон провёл опыт с круксовой трубкой,[8] в котором впервые наблюдался электрон. На катод подавалось некое напряжение и, как впоследствии оказалось, в таких условиях катод излучает пучки электронов. Томсон выяснил, что эти пучки отклоняются при воздействии на них электромагнитным полем. Сам Томсон называл эти частицы корпускулами, но позднее им дали отдельное имя — электроны.
Модель атома Томсона была опровергнута в 1909 году учеником Томсона — Эрнестом Резерфордом. Последний обнаружил, что атом не однороден по своей структуре: в центре находится массивное положительное плотное ядро, а вокруг него, как планеты вокруг Солнца, летают электроны.
Оказалось, если обстреливать альфа-частицами тонкий лист золота, то альфа-частицы будут отклоняться на разные углы, причём часть из них — на угол больше а такое может быть только если массивная положительная альфа-частица встречает на своём пути достаточно массивное положительное препятствие.[9]
У планетарной модели был ряд недостатков, из которых самым существенным был недостаток, связанный с теоретически верной потерей энергии электрона: так как электрон вращается вокруг атома, то на него действует центростремительное ускорение, а по формуле Лармора любая заряженная частица, движущаяся с ускорением, излучает. То есть теряет энергию. А если электрон теряет энергию, то в конце концов он должен упасть на ядро, чего в реальности не происходит.
В 1913 году Нильс Бор предположил, что электрон может вращаться не как угодно, а на строго определённых орбитах, не меняя своей энергии сколь угодно долгое время. Переход с орбиты на орбиту требует определённой энергии — кванта энергии.
В 1907 году радиохимиком Фредериком Содди было обнаружено, что существуют вещества с одинаковыми химическими свойствами, но отличающиеся числом нейтронов.
В 1930 году было обнаружено, что если высокоэнергетичные альфа-частицы попадают на некоторые лёгкие элементы, то последние излучают лучи с необычно большой проникающей способностью. Это излучение обладает гораздо большей проникающей способностью, чем все известные остальные лучи. В 1932 году Ирен и Фредерик Жолио-Кюри показали, что если это неизвестное излучение попадает на парафин, то образуются протоны высоких энергий, не сходящиеся с теоретическими расчётами. Физик Джеймс Чедвик предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и провёл серию экспериментов[каких?], подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами.
В 1924 году Луи Де Бройлем было предположено, что все частицы связаны с волной, названной впоследствии волной де Бройля с частотой и с длиной волны
В 1926 году было записано уравнение Шрёдингера,[10] описывающее субатомные частицы как волны. Чуть позже Макс Борн предположил, что корпускулярно-волновой дуализм верен не только для фотонов, но и в принципе для всех частиц. Было введено понятие орбитали — место наиболее вероятного нахождения электрона данного атома. Ведь теоретически электрон может быть очень редко обнаружен на любом расстоянии от атома,[11] но чаще всего он находится где-то рядом с оным, как раз «на орбитали».
![]() | Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными, и к грядущим поколениям живых существ перешла бы только одна фраза, то, какое утверждение, составленное из наименьшего числа слов, принесло бы наибольшую информацию?
Я считаю, что это – атомная гипотеза: все тела состоят из атомов - маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольших расстояниях, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения.Р. Фейнман. | ![]() |
|year=
(справка на английском)Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .