WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

А́лгебра Линденба́ума — Та́рского (часть источников называет её алгеброй Линденбаума) в математической логике определяется для логической теории как множество классов логически равносильных предложений этой теории. Для этих классов определены обычные логические операции.

Данная алгебра впервые появилась в статье Альфреда Тарского[1] (1935 год) как способ установить соответствие между логикой высказываний и теорией булевых алгебр. Развитая Адольфом Линденбаумом и другими математиками, эта структура стала источником[2] современной алгебраической логики[en].

Определение

Пусть логическая теория. Определим для её предложений отношение эквивалентности: p ~ q, когда предложения p и q логически эквивалентны в T. Определённые таким образом классы эквивалентности образуют факторсистему которая наследует из логические операции — обычно конъюнкцию и дизъюнкцию. Если в определено отрицание, то наследуется и оно, и тогда становится булевой алгеброй, которая и называется алгеброй Линденбаума — Тарского (подразумевается, что выполняются законы классической логики).

Примечания

  1. A. Tarski. Logic, Semantics, and Metamathematics — Papers from 1923 to 1938 — Trans. J.H. Woodger / J. Corcoran. — 2nd. — Hackett Pub. Co., 1983.
  2. W.J. Blok, Don Pigozzi (1989). “Algebraizable logics”. Memoirs of the AMS. 77 (396).; here: pages 1-2

Литература

  • Hinman, P. Fundamentals of Mathematical Logic. — A K Peters, 2005. ISBN 1-56881-262-0.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии