А́лгебра Линденба́ума — Та́рского (часть источников называет её алгеброй Линденбаума) в математической логике определяется для логической теории как множество классов логически равносильных предложений этой теории. Для этих классов определены обычные логические операции.
Данная алгебра впервые появилась в статье Альфреда Тарского[1] (1935 год) как способ установить соответствие между логикой высказываний и теорией булевых алгебр. Развитая Адольфом Линденбаумом и другими математиками, эта структура стала источником[2] современной алгебраической логики[en].
Пусть — логическая теория. Определим для её предложений отношение эквивалентности: p ~ q, когда предложения p и q логически эквивалентны в T. Определённые таким образом классы эквивалентности образуют факторсистему которая наследует из логические операции — обычно конъюнкцию и дизъюнкцию. Если в определено отрицание, то наследуется и оно, и тогда становится булевой алгеброй, которая и называется алгеброй Линденбаума — Тарского (подразумевается, что выполняются законы классической логики).
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .