WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Теория информации

В математической теории вероятности энтропийная скорость случайного процесса является, неформально говоря, временно́й плотностью средней информации в стохастическом процессе. Для стохастических процессов со счётным индексом энтропийная скорость является пределом совместной энтропии[en] членов процесса , поделённым на , при стремлении к бесконечности:

если предел существует. Альтернативно, связанной величиной является:

Для сильно стационарных стохастических процессов . Энтропийная скорость можно рассматривать как общее свойство стохастических источников, то есть свойство асимптотической равнораспределенности[en]. Энтропийная скорость можно использовать для оценки сложности стохастических процессов. Он используется в различных приложениях от описания сложности языков, слепого разделения сигналов до оптимизации преобразователей и алгоритмов сжатия данных. Например, критерий максимальной энтропийной скорость может быть использован для отбора признаков в обучении машин[1].

Энтропийная скорость для марковских цепей

Поскольку стохастический процесс, определяемый цепью Маркова, которая неприводима, непериодична и положительно рекурренктна, имеет стационарное распределение, энтропийная скорость независим от начального распределения.

Например, для такой цепи Маркова , определённом на счётном числе состояний, заданных матрицей переходов , , задаётся выражением:

,

где является {{|Асимптотическое распределение|асимптотическим распределением|||Asymptotic distribution}} цепи.

Простое следствие этого определение заключается в том, что независимый одинаково распределённый случайный процесс имеет энтропийную скорость, равную энтропии любого индивидуального члена процесса.

См. также

Примечания

  1. Einicke, 2018, с. 1097–1103.

Литература

  • Einicke G. A. Maximum-Entropy Rate Selection of Features for Classifying Changes in Knee and Ankle Dynamics During Running // IEEE Journal of Biomedical and Health Informatics. — 2018. Т. 28, вып. 4. DOI:10.1109/JBHI.2017.2711487.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии