WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Уравнитель (также ядро разности) в теории категорий — обобщение понятия решения некоторого (алгебраического, дифференциального и т. п.) уравнения, то есть множества, на котором данные отображения совпадают.

Двойственное уравнителю понятие — коуравнитель.

Определение

Уравнитель морфизмов и  — это предел (если он существует) диаграммы , то есть такой морфизм , что и для любого морфизма существует единственный морфизм , для которого следующая диаграмма коммутативна:

Равносильно, уравнитель можно определить как коуниверсальный квадрат для морфизмов и .

Примеры

  • В категории множеств уравнитель двух отображений и  — это естественное вложение во множество множества, на котором и совпадают, то есть множества .
  • Аналогичным образом определяется уравнитель в категории топологических пространств.
  • В категории абелевых групп уравнитель гомоморфизмов совпадает с ядром их разности. Именно поэтому уравнитель в произвольной категории также иногда называют ядром разности, хотя в не предаддитивной категории, вообще говоря, разность морфизмов не определена.

Литература

  • Маклейн С. Глава 3. Универсальные конструкции и пределы // Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова. М.: Физматлит, 2004. — С. 68—94. — 352 с. ISBN 5-9221-0400-4.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии