Теорема Лестера — утверждение в геометрии треугольника, согласно которому в любом разностороннем треугольнике две точки Ферма, центр девяти точек и центр описанной окружности лежат на одной окружности (окружности Лестера). Названа именем канадского математика Джун Лестер (June Lester).
Теорема об окружности Лестера вытекает из более общего утверждения Б. Гиберта (2000), а именно, что любая окружность, диаметр которой является хордой гиперболы Киперта треугольника и перпендикулярен его прямой Эйлера, проходит через точки Ферма[1][2].
В 2014 году Дао Танх Оай (Đào Thanh Oai) показал, что результат Гиберта следует из свойств прямоугольных гипербол. А именно, пусть точки и лежат на одной ветви прямоугольной гиперболы , а и — две точки на , симметричные относительно её центра (точки-антиподы), в которых касательные прямые к параллельны прямой .
Пусть и — две точки на на гиперболе, касательные прямые в которых пересекаются в точке на прямой . Если прямая пересекает в точке , и перпендикуляр в середине отрезка пересекает гиперболу в точках и , то шесть точек лежат на одной окружности[3].
Чтобы получить теорему Лестера из этого результата, необходимо взять в качестве гиперболу Киперта треугольника, в качестве точек — точки Ферма, точками будут внутренняя и внешняя точки Вектена, точками будут ортоцентр и центроид треугольника[3].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .