![]() |
![]() |
![]() | |
![]() |
Расстоя́ние Хэ́мминга — число позиций, в которых соответствующие символы двух слов одинаковой длины различны[1]. В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых q-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.
Первоначально метрика была сформулирована Ричардом Хэммингом во время его работы в Bell Labs для определения меры различия между кодовыми комбинациями (двоичными векторами) в векторном пространстве кодовых последовательностей, в этом случае расстоянием Хэмминга между двумя двоичными последовательностями (векторами) и длины называется число позиций, в которых они различны — в такой формулировке расстояние Хэмминга вошло в словарь алгоритмов и структур данных национального института стандартов и технологий США (англ. NIST Dictionary of Algorithms and Data Structures). Расстояние Хэмминга является частным случаем метрики Минковского (при соответствующем определении вычитания):
В некоторых системах счисления, например, в коде Грея целые кодированные числа, различающиеся на 1, имеют расстояние Хэмминга равное 1, говорят что такие числа являются «соседними», и вообще, два слова, не обязательно двоичные, расстояние Хэмминга между которыми равно 1 называют «соседними».
Соседнее кодирование важно при проектировании логических устройств, где необходимо исключить логические гонки.
Множество слов равной длины образуют метрическое пространство где для каждой пары элементов пространства определено число — расстояние Хэмминга удовлетворяющее аксиомам метрики:
Расстояние Хэмминга всегда:
Для нуклеиновых кислот (ДНК и РНК) возможность гибридизации двух полинуклеотидных цепей с образованием вторичной структуры — двойной спирали — зависит от степени комплементарности нуклеотидных последовательностей обеих цепей. При увеличении расстояния Хэмминга количество водородных связей, образованных комплементарными парами оснований уменьшается и, соответственно, уменьшается стабильность двойной цепи. Начиная с некоторого граничного расстояния Хэмминга гибридизация становится невозможной.
При эволюционном расхождении гомологичных ДНК-последовательностей расстояние Хэмминга является мерой, по которой можно судить о времени, прошедшем с момента расхождения гомологов, например, о длительности эволюционного отрезка, разделяющего гены-гомологи и ген-предшественник.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .