WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Кольцо Безу (названное по имени французского математика Этьена Безу) — это всякая область целостности, в которой каждый конечнопорождённый идеал является главным. Из этого определения следует, что кольцо Безу нётерово тогда и только тогда, когда оно кольцо главных идеалов, обобщением которых кольца Безу и являются.

Целостное кольцо является кольцом Безу тогда и только тогда, когда в этом кольце любые два элемента имеют наибольший общий делитель (НОД), представимый в виде их линейной комбинации. (Это условие означает, что каждый идеал с двумя образующими допускает одну образующую, из чего по индукции выводится, что каждый конечнопорождённый идеал является главным.) Представление НОДа двух элементов их линейной комбинацией часто называют тождеством Безу.

Свойства

Для кольца Безу R следующие условия эквивалентны:

  1. R — кольцо главных идеалов.
  2. R — нётерово.
  3. R — область с однозначным разложением (факториальное кольцо).
  4. R удовлетворяет условию обрыва возрастающих цепочек главных идеалов.
  5. Всякий элемент R разложим в произведение неприводимых элементов.

Как и для колец главных идеалов, для колец Безу любой конечнопорождённый модуль над ними является прямой суммой свободного модуля и модуля кручения. Кроме того, любое кольцо Безу целозамкнуто, и любая локализация кольца Безу также является кольцом Безу.

Примеры

Примеры не нётеровых колец Безу:

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии