WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Пример простого 8-стороннего голигона

Голигон — это любой многоугольник, в котором все углы прямые, а длины сторон являются последовательными целыми числами (от 1 до n). Голигоны придумал (и дал им название) Ли Сэллоус[en], а популяризовал Александр Дьюдени[en] в колонке 1990 года в журнале Scientific American [1]. Вариации определения голигонов позволяют сторонам пересекаться, иметь в качестве длин сторон любые целые числа (не обязательно последовательные) и иметь углы, отличные от 90°[2].

Свойства

В любом голигоне все горизонтальные стороны имеют одинаковую чётность, то же верно и для вертикальных сторон. Таким образом, число сторон n должно быть решением системы уравнений

откуда следует, что n должно делиться на 8.

Число различных голигонов (с разрешением пересечения сторон) с заданным допустимым значением n можно вычислить эффективно с помощью генерирующих функций (последовательность A007219 в OEIS). Число голигонов для допустимых значений n равно 4, 112, 8432, 909288, и т. д.[3]. Поиск числа голигонов с непересекающимися сторонами существенно более сложная задача.

Существует единственный восьмисторонний голигон (показан на рисунке). Этот голигон может замостить плоскость (с поворотом на 180 градусов, см. статью «Критерий Конвея»).

Обобщения

Равноугольник с последовательными длинами сторон порядка n — это замкнутый многоугольник с постоянными углами в каждой вершине, имеющий последовательные длины сторон 1, 2, …, n. Многоугольник может иметь самопересечения[4][5].

Трёхмерное обобщение голигона называется голигранником — это замкнутое односвязное тело, ограниченное гранями кубической решётки с площадями граней 1, 2, …, n для некоторого целого числа n[6]. Были найдены голигранники со значениями n, равными 32, 15, 12 и 11 (минимальное значение)[7].

Примечания

  1. Dewdney, 1990, с. 118–121.
  2. Smith.
  3. Weisstein, Eric W. Golygon (англ.) на сайте Wolfram MathWorld.
  4. Sallows, 1992, с. 55–67.
  5. Sallows, Gardner, Guy, Knuth, 1991, с. 315–324.
  6. Golygons and golyhedra
  7. Golyhedron update

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии