WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Гамильтонов путь в графе Кэли симметрической группы.

Гипотеза Ловаса о гамильтоновом цикле — классическая гипотеза в теории графов.

Сформулирована в четвёртом томе «Искусства программирования», но, скорее всего, была известна гораздо раньше.

Формулировка

Каждый конечный связный вершинно-транзитивный граф содержит гамильтонов путь.

Вариации и обобщения

Полный граф .
Полный граф .  
Граф Петерсена.
Граф Петерсена.  
Граф Коксетера.
Граф Коксетера.  

Ни одно из пяти исключений не является графом Кэли. Это наблюдение приводит к более слабой версии гипотезы

Для ориентированных графов Кэли гипотеза не верна.

Частные случаи

  • Известно, что ориентированный граф Кели абелевой группы имеет гамильтонов путь.
    • С другой стороны, циклические группы, порядок которых не является степенью простого числа, допускают ориентированный граф Кэли без гамильтонова цикла.[1]
  • В 1986 году Д. Витте доказал, что гипотеза верна для графов Кэли p-групп.
  • Вопрос остаётся открытым для диэдральных групп.

Известно, что для симметрической группы гипотеза верна для следующих наборов образующих:

Ссылки

  1. Holsztyński, W. & Strube, R. F. E. (1978), "Paths and circuits in finite groups", Discrete Mathematics Т. 22 (3): 263–272, DOI 10.1016/0012-365X(78)90059-6.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии