Башня полей — последовательность из расширений для некоторого поля : , может быть конечной или бесконечной. Часто записывается вертикально:
Например, — конечная башня расширений поля рациональных чисел, последовательно включающая поля вещественных и комплексных чисел.
Нормальная башня полей — последовательность нормальных расширений, сепарабельная башня полей — последовательность сепарабельных расширений, абелева башня полей — последовательность абелевых расширений.
Классическая задача разрешимости в радикалах многочленов, решённая средствами теории Галуа, может быть сформулирована в терминах башен полей: разрешимость эквивалентна погружаемости поля коэффициентов данного многочлена нормальную и абелеву башню полей.
Башня полей классов — башня полей, построенная над некоторым полем алгебраических чисел, каждый элемент которой является максимальным абелевым неразветвлённым расширением предыдущего. Один из результатов теории полей классов, влекущий важные следствия для алгебраической теории чисел — отрицательное решение неограниченной проблемы Бёрнсайда (теорема Голода — Шафаревича), на языке полей классов формулируется следующим образом: существуют бесконечные башни классов полей[1][2] (в частности, такова башня, построенная над расширением поля рациональных чисел, полученного присоединением числа ).
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .