Алгоритм Лукаса — Канаде — широко используемый в компьютерном зрении дифференциальный локальный метод вычисления оптического потока.
Основное уравнение оптического потока содержит две неизвестных и не может быть однозначно разрешено. Алгоритм Лукаса — Канаде обходит неоднозначность за счет использования информации о соседних пикселях в каждой точке. Метод основан на предположении, что в локальной окрестности каждого пикселя значение оптического потока одинаково, таким образом можно записать основное уравнение оптического потока для всех пикселей окрестности и решить полученную систему уравнений методом наименьших квадратов.[1][2]
Алгоритм Лукаса — Канаде менее чувствителен к шуму на изображениях, чем поточечные методы, однако является сугубо локальным и не может определить направление движения пикселей внутри однородных областей.
Предположим, что смещение пикселей между двумя кадрами невелико. Рассмотрим пиксель p, тогда, по алгоритму Лукаса — Канаде, оптический поток должен быть одинаков для всех пикселей, находящихся в окне с центром в p. А именно, вектор оптического потока в точке p должен быть решением системы уравнений
где
Это уравнение может быть записано в матричной форме:
где
Полученную переопределенную систему решаем с помощью метода наименьших квадратов. Таким образом, получается система уравнений 2×2:
откуда
где — транспонированная матрица . Получаем:
В методе наименьших квадратов все n пикселей в окне оказывают одинаковое влияние. Однако логичнее учитывать более близкие к p пиксели с большим весом. Для этого используется взвешенный метод наименьших квадратов,
или
где — диагональная матрица n×n, содержащая веса , которые будут присвоены пикселям . Получаем следующую систему уравнений:
В качестве весов обычно используется нормальное распределение расстояния между и p.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .