Характеристическая кривая задания (ХКЗ) - это график функции, который показывает вероятность выполнения определенного задания теста людьми с разными уровнями способностей.
Зачастую при тестовой оценке способностей используется метод общей оценки. Однако возникает проблема: при таком подходе не учитывается сложность заданий (т.е. способности индивида, решившего 3 сложных задания и того, который решил 3 простых задания, оцениваются как равные). В связи с этим возникает необходимость использования норм.
Например, можно использовать уровень трудности ("p-значения", т.е. пропорция испытуемых, выполняющих задания) наиболее сложных правильно решенных заданий как показатель способностей. Также можно вычислить среднюю сложность правильно решенных заданий. Однако проблема остается: слишком уж много разных показателей можно создать на основе "p-значений", и становится не ясно, какой именно показатель следует использовать для оценки способностей.
Один из возможных подходов к разрешению этой проблемы состоит в применении имеющейся математической модели, описывающей результаты выполнения человеком теста.
Так, ХКЗ будет выглядеть следующим образом:
Этот график отображает вероятность верного решения задания людьми с разным уровнем способностей. На этом рисунке представлена "однопараметрическая модель" ХКЗ, так как она отображает только параметр сложности задания. Это график "логистической функции", который можно описать математически:
,
где - вероятность того, что человек решит задание i правильно при условии, что он имеет уровень способностей, равный φ; e=2,718; φ - способности личности; bi - уровень трудности задания i.
В двухпараметрической ХКЗ учитываются сразу два параметра: показатели дискриминации (a) и трудности (b). Показатель дискриминации - показатель "рассеивания" значений по оси ОХ.
.
Здесь принимается в расчет также и вероятность угадывания (при наличии вариантов ответа задании).
,
где ci - вероятность, с которой индивид с с очень низким уровнем способностей ответит на задание верно.
Все три математические модели (ХКЗ) описывают связи между способностями человека и вероятностью его успешности при решении конкретных тестовых заданий. Т.е. имея информацию об уровне способностей индивида и параметрах задания, мы можем установить вероятность верного решения задания конкретным человеком. Данный подход используется в теории сложности заданийй, где реализуется обратная логика: получив ответы человека на тестовые задания, мы хотим установить вероятные значения параметров каждого задания и уровень способностей каждого индивида.
![]() |
Это заготовка статьи по психологии. Вы можете помочь проекту, дополнив её. |
![]() |
Это заготовка статьи по статистике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .