WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Линии уровня у морсовской функции на торе с четырьмя критическими точками

Функция Морсагладкая функция на многообразии, имеющая невырожденные критические точки.

Функции Морса возникают и используются в теории Морса, одном из основных инструментов дифференциальной топологии.

Определение

Пусть ― гладкое многообразие, край которого является дизъюнктным объединением (возможно, пустых) многообразий и . Функция Морса триады ― такая гладкая класса функция , (или ) при , что:

  1. все критические точки функции лежат в и невырождены.

Свойства

  • Если многообразие конечномерно, то для множество функций Морса достигает минимума (глобального) на каждой компоненте связности.
  • В пространстве всех -гладких ( ) функций
множество функций Морса является плотным открытым множеством[1].

Вариации и обобщения

Функции Морса естественно обобщаются на гладкие гильбертовы полные (относительно некоторого метрического тензора) многообразия. При этом требуется дополнительное условие:

  • (условие Пале ― Смейла) на любом замкнутом множестве , где функция ограничена, а нижняя грань функции равна нулю, существует критическая точка функции .

Это условие автоматически выполняется в конечномерном случае.

В этом случае множество функций Морса не образует открытого множества, но является множеством 2-й категории Бэра

См. также

Примечания

  1. V. Guillemin, A. Pollack, Differential topology — Prentice-Hall, New York, NY, 1974.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии