WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Теорема Харкорта

Теорема Харкорта — это формула в геометрии для площади треугольника как функции длин сторон и расстояний от вершин треугольника до произвольной прямой, касательной к вписанной в треугольник окружности[1].

Теорема названа именем Дж. Харкорта, ирландского профессора[2].

Утверждение

Пусть треугольник задан своими вершинами A, B и C, противоположные вершинам стороны имеют длины a, b и c, площадь равна K и прямая касается вписанной в треугольник окружности в произвольной точке. Обозначим расстояния от вершин треугольника до прямой через a ', b ' и c ', при этом, если вершина и центр окружности лежат по разные стороны от прямой, расстояние считается отрицательным. Тогда

Вырожденный случай

Если касательная прямая содержит одну из сторон треугольника, то два расстояния равны нулю и формула упрощается до формулы треугольника — удвоенная площадь равна произведению основания на высоту.

Обобщение

  • Если на касательную к кругу радиуса x, концентрическому с вписанным кругом, опустить из вершин треугольника перпендикуляры , то [4].
.
  • В частности, если x=r, где r -радиус вписанного круга, то мы имеем теорему Харкорта.

Свойство двойственности

Если a', b', c' вместо расстояния до произвольной касательной к вписанной окружности обозначают расстояния от сторон до произвольной точки, равенство

остаётся верным[5].

Примечания

  1. Dergiades, Salazar, 2003, с. 117—124.
  2. G.-M., 1912, с. 750.
  3. Dergiades, Salazar, 2003, Thm.3.
  4. Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание. М.: Учпедгиз, 1962. Следствие на с. 43.
  5. Whitworth, 2012, с. 11.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии