WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Вайнберга о связи полей с частицами — утверждение о связи между видом фурье-образов квантованных полей и операторами рождения и уничтожения частиц положительной массы. Доказана С. Вайнбергом в 1964 г. [1][2][3][4] Следствием этой теоремы являются зависимость типов полей от спина их квантов. При добавлении условия неприводимости поля по отношению к группе Пуанкаре можно получить уравнение Дирака для электрона, Вейля для нейтрино, Максвелла для фотона.[5]

Формулировка

Для частиц положительной массы фурье-образы квантованных полей связаны с операторами рождения и уничтожения частиц линейными соотношениями:[6]

Пояснения

Оператор является оператором рождения новой частицы с импульсом и состоянием поляризации . Оператор является оператором уничтожения существующей частицы с импульсом и состоянием поляризации . Оператор является оператором рождения новой античастицы с импульсом и состоянием поляризации . Оператор является оператором уничтожения существующей античастицы с импульсом и состоянием поляризации . Состояние поляризации может принимать значения , где  — спин квантов поля. Эти операторы удовлетворяют перестановочным соотношениям:

Выражения и обозначают фурье-образы квантованного поля , из формулы

где , функция равна единице при и нулю при .[7] Выражения и обозначают коэффициенты, однозначно вычисляемые при помощи использования свойств преобразований квантованных полей относительно группы Лоренца.[8]

Следствия

С использованием сформулированной выше теоремы Вайнберга о связи полей с частицами [9] может быть доказана, как следствие, Теорема Паули.

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии