WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Адамара о вложении — одно из классических утверждений дифференциальной геометрии поверхностей.

История

Теорема приписывается Жаку Адамару; хотя в его статье [1] теорема не сформулирована, её можно получить несложным дополнительным рассуждением. Точная формулировка и обобщения были даны Джеймсом Стокером, он же приписывает этот результат Адамару. Дальнейшие обобщения были даны Стефани Александер[en], Михаилом Леонидовичем Громовым и другими.

Формулировка

Если погруженная поверхность в евклидовом пространстве является замкнутой, гладкой, регулярной и имеет положительную гауссову кривизну, то она является вложенной сферой и ограничивает выпуклое тело.

Вариации и обобщения

  • Открытые поверхности также вложены и ограничивают выпуклое множество.[2]
  • Локально выпуклая гиперповерхность, погруженная в полное многообразие с положительной секционной кривизной, является границей погруженного шара.[4]

Примечания

  1. пункт 23 в J. Hadamard. “Sur certaines propriétés des trajectoires en dynamique”. J. math. pures appl. 3 (1897), pp. 331–387.
  2. J. Stoker. Über die Gestalt der positiv gekrümmten offenen Flächen im dreidimensionalen Raume (нем.) // Compositio Math. — 1936. Bd. 3. S. 55–88.
  3. Alexander, S. Locally convex hypersurfaces of negatively curved spaces. Proc. Amer. Math. Soc. 64 (1977), no. 2, 321–325.
  4. Громов М. Знак и геометрический смысл кривизны. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000. — 128 с. ISBN 5-93972-020-X.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии