WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Схема с разностями против потока в вычислительной физике — класс методов дискретизации для решения (явными схемами) дифференциальных уравнений в частных производных гиперболического типа (гиперболических уравнений).

Например, одномерное уравнение волны имеет вид

Оно описывает распространение волны в направлении со скоростью . Такое уравнение также является математической моделью одномерной линейной адвекции. Рассматривая обыкновенную точку сетки , в одномерном случае есть только два допустимых направления, левое и правое. Если положительна, то левая сторона называется направлением против потока, а правая сторона называется направлением по потоку. (Если отрицательна, то наоборот). Если при использовании конечных разностей для пространственной производной содержит больше точек на стороне против потока, то схема называется схемой с разностями против потока[1].

Первого порядка

Простейший пример, пример первого порядка:[2]

Компактная форма

Определяя

,

два условных уравнения (1) и (2) можно записать в одном:

Такое уравнение представляет схемы с разностями против потока в общем виде. Стабильность схемы с разностями против потока определяется критерием Куранта — Фридрихса — Леви.[3]

Источники

  1. Флетчер К. Вычислительные методы в динамике жидкости. Springer, 1992. ISBN 9783540530589.
  2. Patankar, S. V. Numerical Heat Transfer and Fluid Flow. Taylor & Francis, 1980. ISBN 978-0-89116-522-4.
  3. Hirsch, C. Numerical Computation of Internal and External Flows. John Wiley & Sons, 1990. ISBN 978-0-471-92452-4.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии