Критерий Куранта — Фридрихса — Леви (критерий КФЛ) — необходимое условие устойчивости явного численного решения некоторых дифференциальных уравнений в частных производных. Как следствие, во многих компьютерных симуляциях временной шаг должен быть меньше определённого значения, иначе результаты будут неправильными. Критерий назван в честь Рихарда Куранта, Курта Фридрихса и Ганса Леви, которые описали его в своей работе в 1928 году.
Физически критерий КФЛ означает, что частица жидкости за один шаг по времени не должна продвинуться больше, чем на один пространственный шаг.[1]
Критерий КФЛ применяется к гиперболическим уравнениям. В одномерном случае условие имеет вид:
где
В двумерном случае условие имеет вид:
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .