WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Рецептор эритропоэтина
Доступные структуры
PDB Поиск ортологов: PDBe, RCSB
Идентификаторы
СимволEpoR, Epo-R
Внешние IDOMIM: 133171 MGI: 95408 HomoloGene: 1731 ChEMBL: 1817 GeneCards: EpoR, Epo-R Gene
Профиль экспрессии РНК
Больше информации
Ортологи
ВидЧеловекМышь
Entrez205713857
EnsemblENSG00000187266ENSMUSG00000006235
UniProtP19235P14753
RefSeq (мРНК)NM_000121NM_010149
RefSeq (белок)NP_000112NP_034279
Локус (UCSC)Chr 19:
0 – 0 Mb
Chr 9:
0 – 0 Mb
Поиск в PubMed

Рецептор эритропоэтина (EpoR) — белок, у людей кодируется геном EpoR[1]. Пептидная цепь EpoR  имеет атомную массу 52kDa, атомная масса гликопептида вместе с единственной углеводной цепью - 56-57kDa (по другим данным , 66-105kDa). EpoR принадлежит к семейству цитокиновых рецепторов. EpoR присутствует на мембране в виде гомодимеров[2], которые при связывании с лигандом эритропоэтином (Epo) меняют свою конформацию. Эти изменения конформации вызывают аутофосфорилирование киназы Jak2, которая связана с ним изначально, это связано с активностью Jak2[3][4]. Сегодня наиболее аргументированной функцией EpoR является способствование распространению эритроидных предшественников и спасению их от апоптоза[1]. Субъединицы EpoR также способны образовывать гетеродимеры с другими белками-рецепторами — βcR и EPHB4.

Механизм действия

Известные функции EpoR. Дифференцировка эритроидного ряда зависит от регулятора транскрипции GATA1. Считается, что EpoR участвует в регуляции диференцировки через несколько сигнальных путей, в том числе STAT5.

Цитоплазматические домены EpoR содержат ряд фосфотирозинов, фосфорилированных Jak2 и служащих местами стыковки для различных активаторов внутриклеточного пути.

В дополнение к активации Ras/Akt и ERK/MAP киназы, фосфатидилинозитол 3-киназы/AKT пути и STAT транскрипционных факторов, фосфотирозины также служат в качестве стыковочных участков для фосфатаз, отрицательно воздействующих на сигнализацию EpoR, что предотвращает сверхактивацию.

Выживание эритроидов

Главная роль EpoR — стимулировать быстрое распространение клеток-предшественников эритроцитов и спасение этих клеток от гибели.[5]

EpoR вместе с фактором транскрипции GATA-1, вызывает транскрипцию белков, способствующих сохранению Bcl-xL.[6]

Кроме того, EpoR задействован в подавлении экспрессии рецепторов гибели Fas, Trail и TNFa, которые негативно влияют на эритропоэз.[7][8][9]

До сих пор неизвестно, непосредственно ли Epo/EpoR служит причиной распространения и дифференцировки предшественников эритроцитов в естественных условиях, поскольку эффекты были описаны на основе работы in vitro[5].

Дифференцировка эритроидного ряда

Есть основания полагать, что дифференцировка эритроидного ряда в основном зависит от присутствия и индукции таких транскрипционных факторов, как GATA-1, FOG-1 и EKLF, а также от супрессии таких миелоидных и лимфоидных факторов, как PU.1.[10] Прямые эффекты сигнализации EpoR — индукция эритроид-специфичных генов, как бета-глобин, в основном плохо поддаются изучению. Известно, что GATA-1 может провоцировать экспрессию EpoR.[11] В свою очередь, сигнальный путь PI3-K/AKT увеличивает активность GATA-1.[12]

Клеточный цикл эритроидного ряда

Распространение EpoR, вероятнее всего, зависит от типа клеток. Известно, что EpoR может активировать митогенные сигнальные пути и управлять распространением разнообразных неэритроидных и раковых клеток. 

Благодаря сигнализации EpoR, CFU-e-предшественники входят в клеточный цикл во время индукции GATA-1 и подавления PU.1.[13] Во время следующих этапов дифференцировки размер клетки уменьшается, а в самом конце ядро выбрасывается наружу. Выживание клеток на этих этапах как раз и зависит от сигнализации EpoR. Также сигнализация EpoR влияет на распространения BFU-e предшественников, которые еще не были достаточно хорошо изучены. 

Кроме того, из некоторых данных о макроцитозе при гипоксическом стрессе (когда Epo увеличивается в тысячи раз) следует, что в последующих этапах митоза практически нет, а экспрессия EpoR очень низкая (или отсутствует). Это нужно для того, чтобы как можно скорее обеспечить доступ к запасу эритроцитов. Эти данные доказывают, что ограниченная способность распространяться зависит от Epo, а не от других факторов. EpoR в дифференцировке эритроидного ряда может функционировать в первую очередь как фактор выживания, в то время как его влияние на клеточный цикл в естественных условиях проявляется по прошествии некоторого времени.[14] В других клеточных системах EpoR может обеспечить определенный пролиферативный сигнал. [15]

Участие мультипотентных предшественников в дифференцировке эритроидного ряда

В данное время роль EpoR в дифференцировке неясна. Экспрессия EpoR может увеличиваться ещё в отделе гемопоэтических стволовых клеток[16]. Неизвестно, какую роль играет сигнализация EpoR в ранней стадии производства эритробластов: разрешающую (то есть индуцирующую только выживание) или инструктирующую (то есть активирующую маркёров для блокировки предшественники на заданной траектории дифференцировки).

Текущие публикации предполагают, что в первую очередь они играют разрешающую роль. Производство BFU-e и CFU-e предшественников было нормальным в эмбрионах грызунов с нокаутированным Epo, равно как и с нокаутированным EpoR[17]. Однако при добавлении Epo или при гипоксическом стрессе число BFU-e и CFU-e крайне сильно возрастает. В любом случае, неясно, какую из двух ролей всё же играет EpoR. Дополнительные вопросы вызывает информация о том, что пути, которые активирует EpoR, общие со многими другими рецепторами. А если заменить EpoR на пролактиновый рецептор, то всё равно идет поддержка дифференцировки и выживания эритроидного ряда, но эти данные, опять же, получены из исследований in vitro[18][19]. В итоге эти данные говорят о том, что, вероятнее всего EpoR участвует в дифференцировке эритроидного ряда не неизвестной инструктирующей функцией, а его ролью в выживании мультипотентных предшественников.

Исследование мутаций на животных

Мыши с усеченным EpoR жизнеспособны[20], что дает возможность предположить, что активность Jak2 достаточна для обеспечения эритропоэза без обязательного фосфотирозинового молекулярного докинга.

Мыши с вариантом рецептора EpoR-HM обладают мутировавшем из тирозина в 343 позиции фенилаланином, что делает молекулярный докинг Stat5 неэффективным. Эти мыши страдают анемией и дают слабый ответ на гипоксический стресс.

Мыши с нокаутированным EpoR имеют дефекты в сердце, мозге и сосудистой системе.

Клиническое значение

Сверхпроизводство эритроцитов повышает шанс развития таких патологий, как тромбоз и апоплексический удар. Дефекты EpoR могут приводить к эритролейкозу и наследственному эритроцитозу. Мутации в Jak2-киназах, связанные с EpoR, также могут привести к истинной полицитемии.[21]

Редко подобное сверхпроизводство эритроцитов просто повышает выносливость без отрицательных эффектов.[22]

Источники

  1. 1 2 Entrez Gene: EPOR erythropoietin receptor.
  2. Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA (Feb 1999). “Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation”. Science. 283 (5404): 987—90. DOI:10.1126/science.283.5404.987. PMID 9974392.
  3. Youssoufian H, Longmore G, Neumann D, Yoshimura A, Lodish HF (May 1993). “Structure, function, and activation of the erythropoietin receptor”. Blood. 81 (9): 2223—36. PMID 8481505.
  4. Wilson IA, Jolliffe LK (Dec 1999). “The structure, organization, activation and plasticity of the erythropoietin receptor”. Current Opinion in Structural Biology. 9 (6): 696—704. DOI:10.1016/S0959-440X(99)00032-9. PMID 10607675.
  5. 1 2 Koury MJ, Bondurant MC (Apr 1990). “Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells”. Science. 248 (4953): 378—81. DOI:10.1126/science.2326648. PMID 2326648.
  6. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF (Jul 1999). “Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction”. Cell. 98 (2): 181—91. DOI:10.1016/S0092-8674(00)81013-2. PMID 10428030.
  7. De Maria R, Testa U, Luchetti L, Zeuner A, Stassi G, Pelosi E, Riccioni R, Felli N, Samoggia P, Peschle C (Feb 1999). “Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis”. Blood. 93 (3): 796—803. PMID 9920828.
  8. Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M (Jul 2006). “Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo”. Blood. 108 (1): 123—33. DOI:10.1182/blood-2005-11-4458. PMC 1895827. PMID 16527892.
  9. Felli N, Pedini F, Zeuner A, Petrucci E, Testa U, Conticello C, Biffoni M, Di Cataldo A, Winkles JA, Peschle C, De Maria R (Aug 2005). “Multiple members of the TNF superfamily contribute to IFN-gamma-mediated inhibition of erythropoiesis”. Journal of Immunology. 175 (3): 1464—72. DOI:10.4049/jimmunol.175.3.1464. PMID 16034083.
  10. Cantor AB, Orkin SH (May 2002). “Transcriptional regulation of erythropoiesis: an affair involving multiple partners”. Oncogene. 21 (21): 3368—76. DOI:10.1038/sj.onc.1205326. PMID 12032775.
  11. Zon LI, Youssoufian H, Mather C, Lodish HF, Orkin SH (Dec 1991). “Activation of the erythropoietin receptor promoter by transcription factor GATA-1”. Proceedings of the National Academy of Sciences of the United States of America. 88 (23): 10638—41. DOI:10.1073/pnas.88.23.10638. PMC 52985. PMID 1660143.
  12. Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S (Feb 2006). “Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway”. Blood. 107 (3): 907—15. DOI:10.1182/blood-2005-06-2516. PMC 1895894. PMID 16204311.
  13. Pop R, Shearstone JR, Shen Q, Liu Y, Hallstrom K, Koulnis M, Gribnau J, Socolovsky M (2010). “A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression”. PLoS Biology. 8 (9). DOI:10.1371/journal.pbio.1000484. PMC 2943437. PMID 20877475.
  14. Seno S, Miyahara M, Asakura H, Ochi O, Matsuoka K, Toyama T (Nov 1964). “MACROCYTOSIS RESULTING FROM EARLY DENUCLEATION OF ERYTHROID PRECURSORS”. Blood. 24: 582—93. PMID 14236733.
  15. Borsook H, Lingrel JB, Scaro JL, Millette RL (Oct 1962). “Synthesis of haemoglobin in relation to the maturation of erythroid cells”. Nature. 196 (4852): 347—50. DOI:10.1038/196347a0. PMID 14014098.
  16. Forsberg EC, Serwold T, Kogan S, Weissman IL, Passegué E (Jul 2006). “New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors”. Cell. 126 (2): 415—26. DOI:10.1016/j.cell.2006.06.037. PMID 16873070.
  17. Wu H, Liu X, Jaenisch R, Lodish HF (Oct 1995). “Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor”. Cell. 83 (1): 59—67. DOI:10.1016/0092-8674(95)90234-1. PMID 7553874.
  18. Socolovsky M, Fallon AE, Lodish HF (Sep 1998). “The prolactin receptor rescues EpoR-/- erythroid progenitors and replaces EpoR in a synergistic interaction with c-kit”. Blood. 92 (5): 1491—6. PMID 9716574.
  19. Socolovsky M, Dusanter-Fourt I, Lodish HF (May 1997). “The prolactin receptor and severely truncated erythropoietin receptors support differentiation of erythroid progenitors”. The Journal of Biological Chemistry. 272 (22): 14009—12. DOI:10.1074/jbc.272.22.14009. PMID 9162017.
  20. Zang H, Sato K, Nakajima H, McKay C, Ney PA, Ihle JN (Jun 2001). “The distal region and receptor tyrosines of the Epo receptor are non-essential for in vivo erythropoiesis”. The EMBO Journal. 20 (12): 3156—66. DOI:10.1093/emboj/20.12.3156. PMC 150206. PMID 11406592.
  21. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (Apr 2005). “A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera”. Nature. 434 (7037): 1144—8. DOI:10.1038/nature03546. PMID 15793561.
  22. de la Chapelle A, Träskelin AL, Juvonen E (May 1993). “Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis”. Proceedings of the National Academy of Sciences of the United States of America. 90 (10): 4495—9. DOI:10.1073/pnas.90.10.4495. PMC 46538. PMID 8506290.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии