Пространство Бервальда — Моора — дифференцируемое многообразие размерности с метрикой, определённой на касательном пространстве в каждой точке с координатами формулой:
В случае метрика Бервальда — Моора совпадает (с точностью до линейной замены координат) с метрикой псевдоевклидовой плоскости, однако при она не является ни псевдоевклидовой метрикой, ни классической финслеровой метрикой (в последнем случае не выполнено условие положительной определённости). Несмотря на это, метрику Бервальда — Моора часто также называют финслеровой[1], но иногда — псевдофинслеровой[2].
Впервые такая метрика была рассмотрена Людвигом Бервальдом (нем. Ludwig Berwald) в работе «Sui differenziali secondi covarianti» (1927) и несколько позже — венгерским математиком Моором (венг. Arthur Moór).[3]
В настоящее время предпринимаются попытки создания физической теории, альтернативной классической релятивистской физике, в которой вместо пространства Минковского используется четырёхмерное пространство Бервальда — Моора.[4]
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .