Плотность (измеримого) множества на вещественной прямой , в точке ― предел (если он существует) отношения
где ― произвольный отрезок, содержащий , а ― его мера Лебега. Если вместо меры рассматривать внешнюю меру, то получится определение внешней плотности в точке .
Аналогично вводится плотность в -мерном пространстве. При этом длины отрезков заменяются объёмами соответствующих -мерных параллелепипедов с гранями, параллельными координатным плоскостям, а предел рассматривается при стремлении к нулю диаметра параллелепипеда.
Для множеств из оказывается полезным понятие правой (левой) плотности в точке , которое получается из общего определения, если в нём рассматривать лишь отрезки , имеющие левым (правым) концом точку .
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .