WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Не путать с Парадоксом Клейна
Графен
Физика графена
Математическая формулировка …
См. также: Портал:Физика

Парадо́кс Кле́йна в графе́не — прохождение любых потенциальных барьеров без обратного рассеяния под прямым углом. Эффект связан с тем, что спектр носителей тока в графене линейный и квазичастицы подчиняются уравнению Дирака для графена. Эффект предсказан теоретически в работе[1] для прямоугольного барьера.

Теория

Коэффициент прохождения (в зависимости от угла падения) через симметричный прямоугольный барьер (энергия частиц 0,04 эВ), при изменении ширины барьера от 25 нм до 150 нм в полярных координатах.

Квазичастицы в графене описываются двумерным гамильтонианом для безмассовых дираковских частиц

где — постоянная Планка, — Ферми скорость, — вектор оставленный из матриц Паули, — оператор набла. Пусть есть потенциальный барьер с высотой и шириной , а энергия налетающих частиц равна . Тогда из решения уравнения Дирака для областей слева барьера (индекс I), в самом барьере (II) и справа от барьера (III) запишутся в виде плоских волн как для свободных частиц:

где приняты следующие обозначения для углов , , и волновых векторов в I-ой и III-ей областях , , и во II-ой области под барьером , знаков следующих выражений и . Неизвестные коэффициенты , амплитуды отражённой и прошедшей волны соответственно находятся из непрерывности волновой функции на границах потенциала.

Для коэффициента прохождения как функции угла падения частицы получено следующее выражение[2]

На рисунке справа показано как изменяется коэффициент прохождения в зависимости от ширины барьера. Показано, что максимальная прозрачность барьера наблюдается при нулевом угле всегда, а при некоторых углах возможны резонансы.

Примечания

  1. Katsnelson M. I., et. al. „Chiral tunnelling and the Klein paradox in graphene“ Nature Physics 2, 620 (2006) DOI:10.1038/nphys384 Препринт
  2. Castro Neto A. H. cond-mat

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии