WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Неравенство Чебышёва для сумм, носящее имя Пафнутия Львовича Чебышёва, утверждает, что если

и

то

Аналогично, если

и

то

Доказательство

Неравенство Чебышёва для сумм легко выводится из перестановочного неравенства:

Предположим, что

и

В виду перестановочного неравенства выражение

является максимально возможным значением скалярного произведения рассматриваемых последовательностей. Суммируя неравенства

получаем

или, разделив на :

Непрерывный случай

Существует также непрерывный аналог неравенства Чебышёва для сумм:

Если f(x) и g(x) — это вещественные интегрируемые на [0,1] функции, возрастающие или убывающие одновременно, то

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии