Нептуний-237 | |||||
---|---|---|---|---|---|
![]() Схема распада нептуния-237 (упрощенная) | |||||
Название, символ | Нептуний-237, 237Np | ||||
Нейтронов | 144 | ||||
Свойства нуклида | |||||
Атомная масса | 237,0481734(20)[1] а. е. м. | ||||
Дефект массы | 44 873,3(18)[1] кэВ | ||||
Удельная энергия связи (на нуклон) | 7574,982(8)[1] кэВ | ||||
Период полураспада | 2,144(7)⋅106[2] лет | ||||
Продукты распада | 233Pa | ||||
Родительские изотопы |
237U (β−) 237Pu (ε) 241Am (α) |
||||
Спин и чётность ядра | 5/2+[2] | ||||
|
|||||
Таблица нуклидов |
Непту́ний-237 — радиоактивный нуклид химического элемента нептуния с атомным номером 93 и массовым числом 237. Наиболее долгоживущий изотоп нептуния, период полураспада 2,144(7)⋅106 лет. Был открыт в 1942 году Гленном Сиборгом и Артуром Валем[3] в результате бомбардировки урана-238 нейтронами[4]:
Период полураспада этого нуклида мал по сравнению с возрастом Земли, поэтому в природных минералах нептуний встречается лишь в ничтожных количествах; первичный (существовавший в момент образования Земли) нептуний-237 давно распался, и в настоящее время в природе существует лишь радиогенный нептуний. Источником изотопов нептуния в природе являются ядерные реакции, протекающие в урановых рудах под воздействием нейтронов космического излучения и спонтанного деления урана-238[5]. Максимальное соотношение 237Np к урану в природе составляет 1,2⋅10−12[4].
Является родоначальником вымершего радиоактивного семейства 4n+1, называемого рядом нептуния; все члены этого семейства (кроме предпоследнего, висмута-209) давно распались.
Активность одного грамма этого нуклида составляет приблизительно 26,03 МБк.
Нептуний-237 образуется в результате следующих распадов:
Из возможных каналов распада нептуния-237 экспериментально обнаружен только α-распад в 233Pa (вероятность 100 %[2], энергия распада 4958,3(12) кэВ[1]):
Спектр испускаемых при распаде α-частиц является сложным и состоит из более чем 20 моноэнергетических линий[4], наиболее вероятны каналы распада с энергиями альфа-частиц 4788,0, 4771,4 и 4766,5 кэВ (соответствующие вероятности 47,64 %, 23,2 %, 9,3 %)[6]. Распад также сопровождается излучением гамма-квантов (и конверсионных электронов) с энергиями от 5,5 до 279,7 кэВ[7] (наиболее характерны линии 29,37 и 86,48 кэВ с соответствующими вероятностями 14,12 % и 12,4 %)[6] и квантов рентгеновского излучения дочерним 233Pa.
Спонтанное деление теоретически возможно, но в эксперименте не наблюдалось (вероятность ≤ 2⋅10−10 %)[2]. То же относится и к кластерному распаду; экспериментально установленное верхнее ограничение на вероятность кластерного распада с вылетом ядра 30Mg по реакции
составляет ≤4⋅10−12 %[2].
Нептуний-237 образуется в урановых реакторах в результате той же реакции, которая привела к открытию данного нуклида. Содержание 237Np в облученном урановом топливе невелико и оценивается величиной, приблизительно равной 0,1 — 0,3 % от образовавшегося плутония или 10−4 — 10−6 % по массе от содержания урана. При использовании уранового топлива, обогащенного изотопами 235U и 236U, нептуний-237 образуется преимущественно по следующей ядерной реакции[4][5]:
Таким образом, основным сырьем для получения нептуния являются отходы плутониевого производства, получаемые при переработке облученного уранового топлива.
Нептуний-237 высокой чистоты получают из препаратов америция-241[5].
Выделение изотопов нептуния осуществляется осаждением, ионным обменом, экстракцией и экстракционно-хроматографическим методом[5].
Путём облучения нейтронами нептуния-237 получают весовые количества изотопно чистого плутония-238, который используется в малогабаритных радиоизотопных источниках энергии (например, в РИТЭГах, кардиостимуляторах)[8].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .