WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Модули римановой поверхности — численные характеристики (параметры), одни и те же для всех конформно эквивалентных римановых поверхностей, в своей совокупности характеризующие конформный класс эквивалентности данной римановой поверхности.

Мотивация

Необходимым условием конформной эквивалентности двух плоских областей является одинаковая связность этих областей. Согласно теореме Римана все односвязные области с более чем одной граничной точкой конформно эквивалентны друг другу: каждую такую область можно конформно отобразить на одну и ту же каноническую область, в качестве которой обычно рассматривают единичный круг. Для областей связности n, n>2, точного эквивалента теоремы Римана не существует: нельзя указать какую-либо фиксированную область, на которую можно однолистно и конформно отобразить все области данного порядка связности. Это привело к более гибкому определению канонической n-связной области, которое указывает общую геометрическую структуру этой области, но не фиксирует её модулей.

Примеры

  • конформные классы компактных римановых поверхностей рода характеризуются действительными модулями;
  • тор ( ) характеризуется двумя модулями;
  • -связная плоская область, рассматриваемая как риманова поверхность с краем, при характеризуется модулями.
  • Каждая двусвязная область плоскости с невырожденными граничными континуумами может быть конформно отображена на некоторое круговое кольцо
, .
Отношение радиусов граничных окружностей этого кольца является конформным инвариантом и называется модулем двусвязной области .

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии