WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Модель системы аксиом — какой-либо математический объект, который отвечает данной системе аксиом. Истинность системы аксиом можно доказать, только построив модель в рамках другой системы аксиом, которая считается «истинной». Кроме того, модель позволяет наглядно продемонстрировать некоторые особенности данной аксиоматической теории.

Об аксиоматических теориях

Аксиоматическая теория строится так: вводятся несколько базовых объектовпланиметрии это точка, прямая, плоскость, «принадлежит», «находится между» и движение). Эти объекты не получают определений, зато постулируется ряд аксиом, которые и объясняют свойства этих объектов.

Аксиоматическая теория не говорит явно, существуют ли точки, прямые и плоскости. Поэтому возможны два варианта:

  • Из системы аксиом будут выведены два противоположных утверждения. Такая система называется противоречивой — это значит, что точек, прямых и плоскостей не существует, а значит, не существует и планиметрии.
  • Будет построена некоторая математическая конструкция (например, на основе арифметики), в рамках которой будут определены «точки», «прямые» и «плоскость». Это и будет моделью планиметрии. Построение модели подтверждает, что система аксиом состоятельна.

(в действительности для планиметрии верно второе, см. ниже.)

Примеры

Модель формальной логики в рамках булевой алгебры

  • «Переменные» — булевы переменные из множества {0,1}.
  • Знаки и  — соответствующие операции булевой алгебры.

Подстановкой всех возможных A, B, C в аксиомы убеждаемся, что в этой модели выполняются все аксиомы. Точно так же проверяется истинность modus ponens.

Модель планиметрии в рамках арифметики

«Точка» — пара действительных чисел .

«Прямая» — все точки, для которых , где и одновременно не равны 0.

«Плоскость» — все возможные пары действительных чисел .

Модель геометрии Лобачевского в рамках планиметрии

Модель Пуанкаре

Наиболее интересной моделью геометрии Лобачевского является модель Пуанкаре. «Плоскость» — это внутренность круга, «точкой» считается точка, а «прямой» — прямая или дуга, перпендикулярная окружности. Углы считаются как в геометрии Евклида.

Физический смысл модели таков. Пусть скорость света в круглом «мире» изменяется от c в центре до нуля на краях по закону (а значит, показатель преломления будет 1 в центре и на краях). Тогда свет будет двигаться по дугам, перпендикулярным границе, но не дойдёт до границы за конечное время. Обитателям этот «мир» будет казаться бесконечным, а геометрию Лобачевского они примут на веру.

См. также

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии