Модель системы аксиом — какой-либо математический объект, который отвечает данной системе аксиом. Истинность системы аксиом можно доказать, только построив модель в рамках другой системы аксиом, которая считается «истинной». Кроме того, модель позволяет наглядно продемонстрировать некоторые особенности данной аксиоматической теории.
Аксиоматическая теория строится так: вводятся несколько базовых объектов (в планиметрии это точка, прямая, плоскость, «принадлежит», «находится между» и движение). Эти объекты не получают определений, зато постулируется ряд аксиом, которые и объясняют свойства этих объектов.
Аксиоматическая теория не говорит явно, существуют ли точки, прямые и плоскости. Поэтому возможны два варианта:
(в действительности для планиметрии верно второе, см. ниже.)
Подстановкой всех возможных A, B, C в аксиомы убеждаемся, что в этой модели выполняются все аксиомы. Точно так же проверяется истинность modus ponens.
«Точка» — пара действительных чисел .
«Прямая» — все точки, для которых , где и одновременно не равны 0.
«Плоскость» — все возможные пары действительных чисел .
Наиболее интересной моделью геометрии Лобачевского является модель Пуанкаре. «Плоскость» — это внутренность круга, «точкой» считается точка, а «прямой» — прямая или дуга, перпендикулярная окружности. Углы считаются как в геометрии Евклида.
Физический смысл модели таков. Пусть скорость света в круглом «мире» изменяется от c в центре до нуля на краях по закону (а значит, показатель преломления будет 1 в центре и на краях). Тогда свет будет двигаться по дугам, перпендикулярным границе, но не дойдёт до границы за конечное время. Обитателям этот «мир» будет казаться бесконечным, а геометрию Лобачевского они примут на веру.
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .