Матричная теорема о деревьях или теорема Кирхгофа — даёт выражение на число остовных деревьев графа через определитель определённой матрицы.
Доказана Густавом Кирхгофом в 1847 году; мотивировкой этой теоремы послужили расчёты электрических цепей.[1][нет в источнике]
Пусть — связный помеченный граф с матрицей Кирхгофа . Все алгебраические дополнения матрицы Кирхгофа равны между собой и их общее значение равно количеству остовных деревьев графа .
граф | 3 его остовных дерева | ||
---|---|---|---|
|
|
|
|
Для графа G с матрицей смежности получаем: .
Алгебраическое дополнение, например, элемента M1, 2 есть , что совпадает с количеством остовых деревьев.
Из матричной теоремы выводится
Теорема обобщается на случай мультиграфов и взвешенных графов. Для взвешенного графа алгебраические дополнения элементов матрицы Кирхгофа равны сумме по всем остовным деревьям произведений весов всех их рёбер. Частный случай получается, если взять веса равными 1: сумма произведений весов остовов будет равна количеству остовов.
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .