WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Схема лазерного гироскопа. Здесь луч лазера циркулирует с помощью зеркал и постоянно усиливается лазером (а точнее квантовым усилителем). Замкнутый контур имеет ответвление через полупрозрачное зеркало (или, например, через щель) в датчик на базе интерферометра.
Кольцевой лазерный гироскоп производства украинского завода «Арсенал» в одном из павильонов авиасалона МАКС-2011. Резонатор имеет форму квадрата. В его центре расположен виброподвес.
Лазерный гироскоп КМ-11-1А производства НИИ «Полюс». Здесь для накачки используется СВЧ-разряд, а вместо зеркал по сторонам резонатора установлены призмы.

Лазерный гироскоп — оптический прибор для измерения угловой скорости, обычно применяется в системах инерциальной навигации. Лазерные гироскопы используют эффект Саньяка — появление фазового сдвига встречных световых волн во вращающемся кольцевом интерферометре. В отличие от механического гироскопа, данный прибор не стремится сохранить начальное направление, а измеряет абсолютную угловую скорость, проинтегрировав которую можно получить значение угла, на который совершён поворот. Преимущества данного гироскопа - цифровой выходной сигнал, малое время готовности, отсутствие подвижных частей (в некоторых случаях).

Принцип работы

Прибор сам по себе является лазером и состоит из активной среды и резонатора, при работе происходит генерация излучения в двух направлениях. Работа лазерного гироскопа основана на эффекте Саньяка, два луча генерируются в резонаторе лазерного гироскопа и, если прибор вращается, то происходит генерация волн разной частоты для разных направлений из-за различных эффективных длин резонатора для разных направлений обхода (вследствие вращения). Описать разность частот в гироскопе, вызванную вращением, можно с помощью формулы:

где — площадь, охватываемая лучом, — периметр резонатора, — угловая скорость вращения гироскопа, — длина волны. [1]

Резонатор лазерного гироскопа может быть достаточно сложным, но обычно это — кольцевой резонатор с тремя или четырьмя зеркалами, резонатор может быть выполнен как моноблочная конструкция, так и состоять из отдельных элементов. Часто резонатор выполняется в форме треугольника или квадрата. Размер гироскопа может быть от нескольких сантиметров до нескольких метров.

В лазерном гироскопе создаётся и поддерживается стоячая волна, а её узлы и пучности в идеальном случае связаны с инерциальной системой отсчёта. Таким образом, положение узлов и пучностей не меняется если гироскоп не вращается (в плоскости кольцевого контура) относительно инерциальной системы отсчёта, а при повороте резонатора (корпуса гироскопа) фотоприёмники измеряют угол поворота, считая пробегающие по ним интерференционные полосы.

Чувствительность лазерного гироскопа пропорциональна площади поверхности, ограниченной лучами лазера.

Измерение угловой скорости

При работе из лазера выходит два луча, распространяющихся в противоположных направлениях. Лучи сводят вместе, в результате получается бегущая интерференционная картина. Считая количество полос, проходящих в единицу времени, можно посчитать разность частот, а следовательно и угловую скорость.

Ошибки лазерного гироскопа

При работе гироскопа возникают ошибки при получении сигнала вращения. Ошибки сводятся к

  • Дрейф нулевого сигнала
  • Изменение масштабного коэффициента
  • Наличие зоны захвата

Первые два типа погрешностей можно объяснить прежде всего влиянием активной среды — изменениями коэффициента преломления, вызванные, например, влиянием температуры или эффектом Физо — Френеля.

Зона захвата возникает вблизи нуля выходной характеристики и не даёт возможности регистрировать сигнал при небольших угловых скоростях. Этот эффект вызван влиянием обратного рассеяния. При малых угловых скоростях различие частот излучения во встречных направлениях небольшое и происходит их синхронизация, делающая невозможным регистрацию сигнала. Для преодоления этого эффекта необходимо сделать различие частот встречных волн достаточно большим. Для этих целей можно использовать невзаимный элемент, магнитооптическую или механическую (виброподвес) частотные подставки.

Зона захвата

Главной особенностью лазерного гироскопа является наличие зоны захвата, приводящей к нечувствительности к вращению при малых угловых скоростях. Поэтому необходимо вывести рабочую точку на линейный участок выходной характеристики. Для этих целей используется частотная подставка: механическая, на эффекте Зеемана или Фарадея.

Применение

Основное применение лазерного гироскопа — навигация подвижных объектов, таких как самолёты или ракеты. Для маленьких приборов (например, сотовый телефон) используются меньшие и менее точные гироскопы.

Помимо навигации гироскоп можно применять для фундаментальных исследований или измерения колебаний земной коры (землетрясения). Для этих целей используются большие гироскопы, с периметром в несколько метров.

Самый точный в мире лазерный гироскоп построен в геодезической обсерватории Веттцелль Мюнхенского технического университета. Он предназначен для фиксации тончайшего изменения смещения земной оси при вращении. Точность прибора такова, что он может улавливать биения земной оси в доли угловых минут.

См. также

Примечания

  1. Ароновиц Ф. Лазерные гироскопы // Применения лазеров. — Москва: Мир, 1974.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии