Критерий Краскела — Уоллиса предназначен для проверки равенства медиан нескольких выборок. Данный критерий является многомерным обобщением критерия Уилкоксона — Манна — Уитни. Критерий Краскела — Уоллиса является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
Известен также под названиями: H-критерий Краскела — Уоллиса, односторонний дисперсионный анализ Краскела — Уоллиса (англ. Kruskal — Wallis one-way analysis of variance), тест Крускала — Уоллиса (англ. Kruskal — Wallis test). Назван в честь американских математиков Уильяма Краскела и Аллена Уоллиса.
Проходит чемпионат мира по футболу. Первая выборка — опрос болельщиков с вопросом «Каковы шансы на победу сборной России?» до начала чемпионата. Вторая выборка —- после первой игры, третья — после второго матча и т. д. Значения в выборках — шансы России на победу по десятибалльной шкале (1 —- «никаких перспектив», 10 — «отвезти в Россию кубок —- дело времени»). Требуется проверить, зависят ли результаты опросов от хода чемпионата.
Заданы выборок:
Объединённая выборка будет иметь вид:
Дополнительные предположения:
Проверяется нулевая гипотеза при альтернативе .
Упорядочим все элементов выборок по возрастанию и обозначим ранг -го элемента -й выборки в полученном вариационном ряду.
Статистика критерия Краскела — Уоллиса для проверки гипотезы о наличии сдвига в параметрах положения двух сравниваемых выборок имеет вид:
где
Гипотеза сдвига отклоняется на уровне значимости , если , где — критическое значение, при и вычисляемое по таблицам. При бо́льших значениях применимы различные аппроксимации.
Пусть
Тогда статистика будет иметь при отсутствии сдвига -распределение с и степенями свободы. Таким образом, нулевая гипотеза отклоняется на уровне значимости , если .
В соответстви с ней нулевая гипотеза сдвига отклоняется с достоверностью , если , где ; , и — соответственно критические значения статистик Фишера и хи-квадрат с соответствующими степенями свободы.
Это более точная аппроксимация, чем аппроксимация Краскела — Уоллиса. При наличии связанных рангов (то есть когда совпадают значения величин из разных выборок и им присваиваются одинаковые средние ранги) необходимо использовать модифицированную статистику , где ; — размер -й группы одинаковых элементов; — количество групп одинаковых элементов. При справедлива аппроксимация распределения статистики ; -распределением с степенями свободы, то есть нулевая гипотеза отклоняется, если .
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .