Необходимо перенести содержимое этой статьи в статью Формула Келли и заменить эту статью на перенаправление. |
Критерий Келли (англ. Kelly criterion) — финансовая стратегия ставок, разработанная Джоном Л. Келли в 1956 году.
Эта стратегия определяет размеры ставок в процентах от величины ваших денежных средств. Но может возникнуть ситуация когда ставка игрока будет меньше минимальной ставки букмекера. Эта стратегия сложна тем, что требует правильной оценки вероятностного исхода. [1]
Формула расчета оптимального размера ставки:
Пример:
Ставка игрока: .
Критерий Келли используется не только в ставках на исход спортивных событий, но и на бирже. При использовании данного метода у игрока возникают следующие проблемы:
При правильной оценке исходов событий банк растет быстрее любой другой стратегии, чем этот критерий и знаменит.
В связи со сложностью определения точного значения вероятности исхода события и большими колебаниями банка (вероятность разорения до X% от банка составляет X%) не многие игроки рискуют использовать данную стратегию в реальных ставках.
Этот критерий известен экономистам и теоретикам-финансистам под такими именами как критерий роста капитала, стратегия оптимального роста, максимизация логарифмической полезности, «стратегия максимизации геометрического среднего портфеля» и т. д. Эдвард Торп начал практическое применение Критерия Келли ведя счёт карт в блэк-джеке, по совету Клода Шеннона, который, как и Джон Л. Келли работал в Bell Labs. С выработкой своей стратегии игры, игрок практически становится инвестором в инвестиционной компании и может применять для инвестирования инвестиционные правила.
Для улучшения этой статьи по экономике желательно: |
![]() |
Это заготовка статьи об азартной игре. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .