WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Когомологии Александрова — Чеха — теория когомологий, основанная на свойствах открытых покрытий топологического пространства. Такие когомологии оказываются удобными при изучении патологических пространств.

Идея построения заключается в том, что если покрытие пространства составлено из достаточно маленьких множеств, то когомологии нерва покрытия являются хорошей аппроксимацией когомологий самого пространства.

Названы в честь Александровa и Чеха. Обычно обозначаются .

Построение

Пусть  — топологическое пространство,  — открытое покрытие . Обозначим через нерв покрытия .

Предположим, покрытие вписано в покрытие , то есть любое множество из содержится в некотором множестве из . Выберем отображение, сопоставляющее каждому множеству из содержащее его множество из . Это отображение индуцирует отображение нервов . Индуцированный гомоморфизм колец когомологий не зависит от выбора . (Поскольку мы работаем с симплициальными комплексами, неважно, какую из теорий когомологий мы выбираем.)

Кольца когомологий с гомоморфизмами образуют обратную систему. Это даёт возможность перейти к обратному пределу

Полученное кольцо называется когомологиями Чеха пространства с коэффициентами в .

Связь с другими теориями когомологий

Польская окружность

См. также

Ссылки

    • Александров П. С., "Аnn. of Math. ", 1928, v. 30, p. 101-87;
    • Сесh Е., "Fundam. math. ", 1932, t. 19, p. 149-83;
    • Bott, Raoul. Differential Forms in Algebraic Topology. — New York : Springer, 1982. ISBN 0-387-90613-4.
    • Hatcher, Allen. Algebraic Topology. — Cambridge University Press, 2002. ISBN 0-521-79540-0.
    • Wells, Raymond. Differential Analysis on Complex Manifolds. — Springer-Verlag, 1980. ISBN 0-387-90419-0. Chapter 2 Appendix A

    Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

    Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

    Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




    Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

    Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

    2019-2025
    WikiSort.ru - проект по пересортировке и дополнению контента Википедии